Skip to main content

Advertisement

Log in

MicroRNAs, small regulatory elements with significant effects on human implantation: a review

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Embryo implantation is a critical process for achieving a successful pregnancy and live birth. The proper implantation must have a synchronized interaction between blastocyst and a receptive endometrium. Many genes are involved in the modulation of precise molecular events during implantation. MicroRNAs (miRNAs) have been extensively reported as gene regulatory molecules on post-transcriptional levels involved in various biological processes such as gametogenesis, embryogenesis, and the quality of sperm, oocyte, and embryos. A plethora of evidence has demonstrated critical roles for miRNAs in regulating genes involved in the implantation process; hence, dysregulation of miRNAs could be associated with significant impairments in implantation, such as recurrent implantation failure. In addition to the indispensable role of miRNAs in the intracellular control of gene expression, they can also be secreted into extracellular fluid and circulation. Therefore, miRNAs in body fluids and blood may be exploited as non-invasive diagnostic biomarkers for different pathological and physiological conditions. Recently, several studies have focused on the discovery of miRNAs function in the implantation process by appraising miRNAs and their target genes in human embryos, endometrial tissue, and cell culture models. Moreover, it was revealed that there could be a significant association between endometrial receptivity or implantation status and the expression of miRNAs in human body fluids, reinforcing their role as non-invasive biomarkers. In the current work, we reviewed the studies concerning the role of intracellular and extracellular miRNAs in human implantation and the influence of their dysregulation on implantation disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. Birth Defects Res C Embryo Today. 2016;108(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  2. Kim S-M, Kim J-S. A review of mechanisms of implantation. Dev Reprod. 2017;21(4):351.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Finch ML, Marquardt JU, Yeoh GC, Callus BA. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol. 2014;54:288–303.

    Article  CAS  PubMed  Google Scholar 

  4. Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The role of micrornas in mammalian fertility: from gametogenesis to embryo implantation. Int J Mol Sci. 2020;21(2):585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet. 2017;34(4):525.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alves MBR, Celeghini ECC, Belleannée C. From sperm motility to sperm-borne microRNA signatures: new approaches to predict male fertility potential. Front Cell Dev Biol. 2020;8:791.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Paul AB, Sadek ST, Mahesan AM. The role of microRNAs in human embryo implantation: a review. J Assist Reprod Genet. 2019;36(2):179–87.

    Article  PubMed  Google Scholar 

  8. Zhou W, Dimitriadis E. Secreted MicroRNA to predict embryo implantation outcome: from research to clinical diagnostic application. Front Cell Dev Biol. 2020;8:939.

    Article  Google Scholar 

  9. Galliano D, Pellicer A. MicroRNA and implantation. Fertil Steril. 2014;101(6):1531–44.

    Article  CAS  PubMed  Google Scholar 

  10. Liang J, Wang S, Wang Z. Role of microRNAs in embryo implantation. Reprod Biol endocrinol. 2017;15(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shekibi M, Heng S, Nie G. MicroRNAs in the regulation of endometrial receptivity for embryo implantation. Int J Mol Sci. 2022;23(11):6210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ochoa-Bernal MA, Fazleabas AT. Physiologic events of embryo implantation and decidualization in human and non-human primates. Int J Mol Sci. 2020;21(6):1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans J, Salamonsen LA, Winship A, Menkhorst E, Nie G, Gargett CE, et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol. 2016;12(11):654–67.

    Article  CAS  PubMed  Google Scholar 

  14. Wang B, Sheng JZ, He RH, Qian YL, Jin F, Huang HF. High expression of l-selectin ligand in secretory endometrium is associated with better endometrial receptivity and facilitates embryo implantation in human being. Am J Reprod Immunol. 2008;60(2):127–34.

    Article  PubMed  Google Scholar 

  15. Haller-Kikkatalo K, Altmaee S, Tagoma A, Uibo R, Salumets A, editors. Autoimmune activation toward embryo implantation is rare in immune-privileged human endometrium. Seminars in reproductive medicine. Thieme Medical Publishers; 2014.

  16. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12(6):731–46.

    Article  PubMed  Google Scholar 

  17. Nachtigall MJ, Kliman HJ, Feinberg RF, Olive DL, Engin O, Arici A. The effect of leukemia inhibitory factor (LIF) on trophoblast differentiation: a potential role in human implantation. J Clin Endocrinol Metab. 1996;81(2):801–6.

    CAS  PubMed  Google Scholar 

  18. Reddy K, Mangale SS. Integrin receptors: the dynamic modulators of endometrial function. Tissue Cell. 2003;35(4):260–73.

    Article  CAS  PubMed  Google Scholar 

  19. Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology. 2018;159(2):1188–98.

    Article  CAS  PubMed  Google Scholar 

  20. Monroig PdC, Calin GA. MicroRNA and epigenetics: diagnostic and therapeutic opportunities. Curr Pathobiol Rep. 2013;1(1):43–52.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Makarova JA, Shkurnikov MU, Wicklein D, Lange T, Samatov TR, Turchinovich AA, et al. Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem. 2016;51(3–4):33–49.

    Article  PubMed  Google Scholar 

  22. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the seed supports microRNA targeting specificity. Mol Cell. 2016;64(2):320–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

    Article  Google Scholar 

  24. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  26. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE. 2012;7(3): e30679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. da Silveira JC, Veeramachaneni DR, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012;86(3):71, 1–10.

  28. Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22(3):125–32.

    Article  CAS  PubMed  Google Scholar 

  30. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    Article  CAS  PubMed  Google Scholar 

  31. McCallie B, Schoolcraft WB, Katz-Jaffe MG. Aberration of blastocyst microRNA expression is associated with human infertility. Fertil Steril. 2010;93(7):2374–82.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenbluth EM, Shelton DN, Sparks AE, Devor E, Christenson L, Van Voorhis BJ. MicroRNA expression in the human blastocyst. Fertil Steril. 2013;99(3):855–61. e3.

  33. Zhang C, Lu X, Yang Y, Ayi N, Li L. Highly expressed microRNA-940 promotes early abortion by regulating placenta implantation by targeting ZNF672. Eur Rev Med Pharmacol Sci. 2019;23(7):2693–700.

    PubMed  Google Scholar 

  34. Sun M, Chen H, Liu J, Tong C, Meng T. MicroRNA-34a inhibits human trophoblast cell invasion by targeting MYC. BMC Cell Biol. 2015;16(1):1–9.

    Article  Google Scholar 

  35. Rosenbluth EM, Shelton DN, Wells LM, Sparks AE, Van Voorhis BJ. Human embryos secrete microRNAs into culture media—a potential biomarker for implantation. Fertil Steril. 2014;101(5):1493–500.

    Article  CAS  PubMed  Google Scholar 

  36. Cuman C, Van Sinderen M, Gantier MP, Rainczuk K, Sorby K, Rombauts L, et al. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine. 2015;2(10):1528–35.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Borges Jr E, Setti AS, Braga DP, Geraldo MV, Figueira RdCS, Iaconelli Jr A. miR-142–3p as a biomarker of blastocyst implantation failure-a pilot study. JBRA Assist Reprod. 2016;20(4):200.

  38. Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Farcomeni A, et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril. 2016;105(1):225–35. e3.

  39. Abu-Halima M, Khaizaran ZA, Ayesh BM, Fischer U, Khaizaran SA, Al-Battah F, et al. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil Steril. 2020;113(5):970–80. e2.

  40. Ata B, Kalafat E, Somigliana E. A new definition of recurrent implantation failure on the basis of anticipated blastocyst aneuploidy rates across female age. Fertil Steril. 2021;116(5):1320–7.

    Article  PubMed  Google Scholar 

  41. Su MT, Tsai PY, Tsai HL, Chen YC, Kuo PL. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9. BioFactors. 2017;43(2):210–9.

    Article  CAS  PubMed  Google Scholar 

  42. Liu M, Wang Y, Lu H, Wang H, Shi X, Shao X, et al. miR-518b enhances human trophoblast cell proliferation through targeting Rap1b and activating Ras-MAPK signal. Front Endocrinol. 2018;9:100.

    Article  Google Scholar 

  43. Cai J-L, Liu L-L, Hu Y, Jiang X-M, Qiu H-L, Sha A-G, et al. Polychlorinated biphenyls impair endometrial receptivity in vitro via regulating mir-30d expression and epithelial mesenchymal transition. Toxicology. 2016;365:25–34.

    Article  CAS  PubMed  Google Scholar 

  44. Shi S, Tan Q, Liang J, Cao D, Wang S, Liang J, et al. Placental trophoblast cell-derived exosomal microRNA-1290 promotes the interaction between endometrium and embryo by targeting LHX6. Mol Ther-Nucleic Acids. 2021;26:760–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kang Y-J, Lees M, Matthews LC, Kimber SJ, Forbes K, Aplin JD. miR-145 suppresses embryo–epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J Cell Sci. 2015;128(4):804–14.

    CAS  PubMed  Google Scholar 

  46. Liu X, Zhao H, Li W, Bao H, Qu Q, Ma D. Up-regulation of miR-145 may contribute to repeated implantation failure after IVF–embryo transfer by targeting PAI-1. Reprod Biomed Online. 2020;40(5):627–36.

    Article  CAS  PubMed  Google Scholar 

  47. Huang K, Chen G, Fan W, Hu L. miR-23a-3p increases endometrial receptivity via CUL3 during embryo implantation. J Mol Endocrinol. 2020;65(2):35–44.

    Article  CAS  PubMed  Google Scholar 

  48. Akbar R, Ullah K, Rahman TU, Cheng Y, Pang H-Y, Jin L-Y, et al. miR-183-5p regulates uterine receptivity and enhances embryo implantation. J Mol Endocrinol. 2020;64(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  49. Li L, Gou J, Yi T, Li Z. MicroRNA-30a-3p regulates epithelial-mesenchymal transition to affect embryo implantation by targeting Snai2. Biol Reprod. 2019;100(5):1171–9.

    Article  PubMed  Google Scholar 

  50. Liang J, Cao D, Zhang X, Liu L, Tan Q, Shi S, et al. miR-192-5p suppresses uterine receptivity formation through impeding epithelial transformation during embryo implantation. Theriogenology. 2020;157:360–71.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou T, Ni T, Li Y, Zhang Q, Yan J, Chen ZJ. circFAM120A participates in repeated implantation failure by regulating decidualization via the miR-29/ABHD5 axis. FASEB J. 2021;35(9): e21872.

    Article  CAS  PubMed  Google Scholar 

  52. Shi L, Zhu L, Gu Q, Kong C, Liu X, Zhu Z. LncRNA MALAT1 promotes decidualization of endometrial stromal cells via sponging miR-498-3p and targeting histone deacetylase 4. Cell Biol Int. 2022;46(8):1264–74.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Q, Zhang H, Jiang Y, Xue B, Diao Z, Ding L, et al. MicroRNA-181a is involved in the regulation of human endometrial stromal cell decidualization by inhibiting Krüppel-like factor 12. Reprod Biol Endocrinol. 2015;13(1):1–9.

    Article  Google Scholar 

  54. Tan Q, Shi S, Liang J, Cao D, Wang S, Wang Z. Endometrial cell-derived small extracellular vesicle miR-100-5p promotes functions of trophoblast during embryo implantation. Mol Ther-Nucleic Acids. 2021;23:217–31.

    Article  CAS  PubMed  Google Scholar 

  55. Liu Y, Mei Q, Shen Q, Yang J, Zou M, Li J, et al. miR-320a-3p levels in human granulosa cells: a promising bio-marker of good quality embryo and clinical pregnancy after IVF/ICSI. 2021;20(1):160.

  56. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 2017;171(2):372–84. e12.

  57. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801.

    Article  CAS  PubMed  Google Scholar 

  58. Altmäe S, Koel M, Võsa U, Adler P, Suhorutšenko M, Laisk-Podar T, et al. Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers. Sci Rep. 2017;7(1):1–15.

    Article  Google Scholar 

  59. Altmäe S, Esteban FJ, Stavreus-Evers A, Simón C, Giudice L, Lessey BA, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2014;20(1):12–28.

    Article  PubMed  Google Scholar 

  60. Kurita T, Medina R, Schabel AB, Young P, Gama P, Parekh TV, et al. The activation function-1 domain of estrogen receptor α in uterine stromal cells is required for mouse but not human uterine epithelial response to estrogen. Differentiation. 2005;73(6):313–22.

    Article  CAS  PubMed  Google Scholar 

  61. Martı́n J, Domı́nguez F, Ávila S, Castrillo JL, Remohı́ J, Pellicer A, et al. Human endometrial receptivity: gene regulation. J Reprod Immunol. 2002;55(1–2):131–9.

  62. Loke H, Rainczuk K, Dimitriadis E. MicroRNA biogenesis machinery is dysregulated in the endometrium of infertile women suggesting a role in receptivity and infertility. J Histochem Cytochem. 2019;67(8):589–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stahl PD, Raposo G. Extracellular vesicles: exosomes and microvesicles, integrators of homeostasis. Physiology. 2019;34(3):169–77.

    Article  CAS  PubMed  Google Scholar 

  64. Kresowik JD, Devor EJ, Van Voorhis BJ, Leslie KK. MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: a potential biomarker for optimum receptivity. Biol Reprod. 2014;91(1):17, 1–6.

  65. Altmäe S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA, et al. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci. 2013;20(3):308–17.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Haraguchi H, Saito-Fujita T, Hirota Y, Egashira M, Matsumoto L, Matsuo M, et al. MicroRNA-200a locally attenuates progesterone signaling in the cervix, preventing embryo implantation. Mol Endocrinol. 2014;28(7):1108–17.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Riyanti A, Febri RR, Zakirah SC, Harzif AK, Rajuddin R, Muharam R, et al. Suppressing HOXA-10 gene expression by MicroRNA 135b during the window of implantation in infertile women. J Reprod Infertil. 2020;21(3):217.

    PubMed  PubMed Central  Google Scholar 

  68. Li R, Qiao J, Wang L, Li L, Zhen X, Liu P, et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol. 2011;9(1):1–9.

    Article  Google Scholar 

  69. Luo X, Yang R, Bai Y, Li L, Lin N, Sun L, et al. Binding of microRNA-135a (miR-135a) to homeobox protein A10 (HOXA10) mRNA in a high-progesterone environment modulates the embryonic implantation factors beta3-integrin (ITGβ3) and empty spiracles homeobox-2 (EMX2). Ann Transl Med. 2021;9(8):662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Q, Ai H, Li X, Tian H, Ning B, Zhang M, et al. Association of miRNA-145 with the occurrence and prognosis of hydrosalpinx-induced defective endometrial receptivity. Bosn J Basic Med Sci. 2021;21(1):81.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wei P, Wang H, Li Y, Guo R. Nucleolar small molecule RNA SNORA75 promotes endometrial receptivity by regulating the function of miR-146a-3p and ZNF23. Aging (Albany NY). 2021;13(11):14924.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Lv Y, Gao S, Zhang Y, Sun J, Gong C, et al. MicroRNA profiles in spontaneous decidualized menstrual endometrium and early pregnancy decidua with successfully implanted embryos. PLoS ONE. 2016;11(1): e0143116.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Estella C, Herrer I, Moreno-Moya JM, Quiñonero A, Martínez S, Pellicer A, et al. miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro. PLoS ONE. 2012;7(7): e41080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tochigi H, Kajihara T, Mizuno Y, Mizuno Y, Tamaru S, Kamei Y, et al. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci Rep. 2017;7(1):1–10.

    Google Scholar 

  75. Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martínez S, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;142(18):3210–21.

    Article  CAS  PubMed  Google Scholar 

  76. Zheng Q, Zhang D, u Yang Y, Cui X, Sun J, Liang C, et al. MicroRNA-200c impairs uterine receptivity formation by targeting FUT4 and α 1, 3-fucosylation. Cell Death Differ. 2017;24(12):2161–72.

  77. Freis A, Keller A, Ludwig N, Meese E, Jauckus J, Rehnitz J, et al. Altered miRNA-profile dependent on ART outcome in early pregnancy targets Wnt-pathway. Reproduction. 2017;154(6):799–805.

    Article  CAS  PubMed  Google Scholar 

  78. Yang Q, Gu W-W, Gu Y, Yan N-N, Mao Y-Y, Zhen X-X, et al. Association of the peripheral blood levels of circulating microRNAs with both recurrent miscarriage and the outcomes of embryo transfer in an in vitro fertilization process. J Transl Med. 2018;16(1):1–14.

    Article  Google Scholar 

  79. Azhari F, Pence S, Hosseini MK, Balci BK, Cevik N, Bastu E, et al. The role of the serum exosomal and endometrial microRNAs in recurrent implantation failure. J Matern-Fetal Neonatal Med. 2022;35(5):815–25.

  80. Mo B, Vendrov AE, Palomino WA, DuPont BR, Apparao K, Lessey BA. ECC-1 cells: a well-differentiated steroid-responsive endometrial cell line with characteristics of luminal epithelium. Biol Reprod. 2006;75(3):387–94.

    Article  CAS  PubMed  Google Scholar 

  81. Moreno-Moya JM, Vilella F, Martínez S, Pellicer A, Simón C. The transcriptomic and proteomic effects of ectopic overexpression of miR-30d in human endometrial epithelial cells. Mol Hum Reprod. 2014;20(6):550–66.

    Article  CAS  PubMed  Google Scholar 

  82. Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS ONE. 2013;8(3): e58502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Balaguer N, Moreno I, Herrero M, González M, Simón C, Vilella F. Heterogeneous nuclear ribonucleoprotein C1 may control miR-30d levels in endometrial exosomes affecting early embryo implantation. MHR: Basic Sci Reprod Med. 2018;24(8):411–25.

  84. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online. 2014;28(1):14–38.

    Article  CAS  PubMed  Google Scholar 

  85. Bashiri A, Halper KI, Orvieto R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions. Reprod Biol Endocrinol. 2018;16(1):1–18.

    Article  Google Scholar 

  86. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.

    Article  CAS  PubMed  Google Scholar 

  87. Shi C, Shen H, Fan L-J, Guan J, Zheng X-B, Chen X, et al. Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin Med J. 2017;130(5):566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Azarpoor A, Ardeshirylajimi A, Mohammadi YS, Dehghan Z, Salehi M. The expression of miR-31 and its target gene FOXP3 in recurrent implantation failure patients. 2020;8(4):389–95.

  89. Zhang Q, Ni T, Dang Y, Ding L, Jiang J, Li J, et al. MiR-148a-3p may contribute to flawed decidualization in recurrent implantation failure by modulating HOXC8. J Assist Reprod Genet. 2020;37(10):2535–44.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chen CH, Lu F, Yang WJ, Yang PE, Chen WM, Kang ST, et al. A novel platform for discovery of differentially expressed microRNAs in patients with repeated implantation failure. Fertil Steril. 2021;116(1):181–88.

  91. Zhao F, Guo Y, Shi Z, Wu M, Lv Y, Song W. hsa_circ_001946 elevates HOXA10 expression and promotes the development of endometrial receptivity via sponging miR-135b. Diagn Pathol. 2021;16(1):1–10.

    Article  Google Scholar 

  92. Zhao Y, He D, Zeng H, Luo J, Yang S, Chen J, et al. Expression and significance of miR-30d-5p and SOCS1 in patients with recurrent implantation failure during implantation window. Reprod Biol Endocrinol. 2021;19(1):1–10.

    Article  CAS  Google Scholar 

  93. Mei F, Kong C, Wang Y, Zhuang J, Xue P, Qi H, et al. MiR-133b Improves decidualization of endometrial stromal cells by targeting KLF12 in recurrent implantation failure. 2021. https://doi.org/10.21203/rs.3.rs-771502/v1

  94. Liu C, Wang M, Zhang H, Sui C. Altered microRNA profiles of extracellular vesicles secreted by endometrial cells from women with recurrent implantation failure. Reprod Sci. 2021;28(7):1945–55.

  95. Terrinoni A, Calabrese C, Basso D, Aita A, Caporali S, Plebani M, et al. The circulating miRNAs as diagnostic and prognostic markers. Clin Chem Lab Med (CCLM). 2019;57(7):932–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Idea development: Elham Azizi and Mohammad Naji; literature search and data analysis: Elham Azizi and Zahra Shams Mofarahe; manuscript drafting: Elham Azizi and Zahra Shams Mofarahe; critical revision: Mohammad Naji.

Corresponding author

Correspondence to Mohammad Naji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, E., Mofarahe, Z.S. & Naji, M. MicroRNAs, small regulatory elements with significant effects on human implantation: a review. J Assist Reprod Genet 40, 697–717 (2023). https://doi.org/10.1007/s10815-023-02735-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02735-w

Keywords

Navigation