Skip to main content
Log in

Proceedings of the first world conference on AI in fertility

  • Commentary
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

Recordings of the AI Fertility oral presentations will be made available through the AI Fertility Society at https://aifertility.org/.

References

  1. Adamson GD, Dyer S, Chambers G, Ishihara O, De Mouzon J, Kupka M, et al. O-151 ICMART preliminary world report 2018. Hum Reprod. 2022;37.

  2. Hajirasouliha I, Elemento O. Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertil Steril. 2020;114:908–13.

    Article  CAS  PubMed  Google Scholar 

  3. Hariton E, Sable D. SUMMIT:IVF - discussing the future of assisted reproduction. F S Rep. 2020;1:54–5.

    PubMed  PubMed Central  Google Scholar 

  4. Munne S, Alikani M, Ribustello L, Colls P, Martinez-Ortiz PA, McCulloh DH, et al. Euploidy rates in donor egg cycles significantly differ between fertility centers. Hum Reprod. 2017;32:743–9.

    Article  CAS  PubMed  Google Scholar 

  5. Coates A, Bankowski BJ, Kung A, Griffin DK, Munne S. Differences in pregnancy outcomes in donor egg frozen embryo transfer (FET) cycles following preimplantation genetic screening (PGS): a single center retrospective study. J Assist Reprod Genet. 2017;34:71–8.

    Article  PubMed  Google Scholar 

  6. Guzman L, Nunez D, Lopez R, Inoue N, Portella J, Vizcarra F, et al. The number of biopsied trophectoderm cells may affect pregnancy outcomes. J Assist Reprod Genet. 2019;36:145–51.

    Article  PubMed  Google Scholar 

  7. Costa-Borges N, Giralt G, Albó E, Alvarez A, Ramos J, Hernandez I, et al. O-122 ICSI in a box: development of a successful automated sperm injection robot with external supervision and minimal manual intervention. Hum Reprod. 2021;36.

  8. Fjeldstad J, Mercuri N, Meriano J, Krivoi A, Campbell A, Smith R, et al. O-204 Non-invasive AI image analysis unlocks the secrets of oocyte quality and reproductive potential by assigning ‘Magenta’ scores from 2-dimensional (2-D) microscope images. Hum Reprod. 2022;37.

  9. Mendizabal-Ruiz G, Chavez-Badiola A, Aguilar Figueroa I, Martinez Nuno V, Flores-Saiffe Farias A, Valencia-Murilloa R, et al. Computer software (SiD) assisted real-time single sperm selection associated with fertilization and blastocyst formation. Reprod Biomed Online. 2022;45:703–11.

    Article  PubMed  Google Scholar 

  10. Lorena Bori PD, Daniella Gilboa M, Ron Maor B, Thamara Viloria P, Ilya Kottel B, Seidman DS, et al. Could the EMA ertificial neural network grade blastocysts as an embryologist? In: ASRM: Fertility and Sterility; 2021. p. E84.

  11. Marcos Meseguer P, Ron Uriel Maor B, Lucia Alegre P, Raquel Del Gallego P, Antonio Pellicer M, Seidman DS, et al. Automated halo identification: a novel predictive feature for IVF success identified through an artificial intelligence (AI) algorithm. In: ASRM: Fertility and Sterility; 2019. p. E157.

  12. Meseguer Estornell F, Bori L, Maor R, Kottel I, Gilboa D, Seidman D, et al. O-085 In-depth analysis of embryo development: Differences among monosomic, trisomic and chromosomally chaotic embryos compared to euploid embryos. Hum Reprod. 2021;36.

  13. Daniella Gilboa M, Seidman DS, Liron Kedar M, Ron Maor B, Ilya Kottel B, Goldberg JM, et al. Blastocyst “pumping” is a detrimental feature predicting implanation failure: highly accurate assessmnet by computer analysis of time-lapse videos. In: ASRM: Fertility and Sterility; 2021. p. E181.

  14. Meseguer M, Bori L, Ron Maor B, Liron Kedar M, Desai N, Daniella Gilboa M, et al. Can computer vision algorithms noninvasively recognize aneuploidy in blastocysts?: “Pumping” appears to be a strong predictive feature. In: ASRM: Fertility and Sterility; 2021. p. E153.

  15. Lorena Bori PD, Ron Maor B, Fernando Meseguer P, Ilya Kottel B, Daniel S. Seidman, Daniella Gilboa M et al. Artificial intelligence is moving closer to reproductive medicine: prediction of blastulation and embryo implanation In: ASRM: Fertility and Sterility; 2021. p. E154.

  16. Jenkins J, van der Poel S, Krussel J, Bosch E, Nelson SM, Pinborg A, et al. Empathetic application of machine learning may address appropriate utilization of ART. Reprod Biomed Online. 2020;41:573–7.

    Article  PubMed  Google Scholar 

  17. Choi B, Bosch E, Lannon BM, Leveille MC, Wong WH, Leader A, et al. Personalized prediction of first-cycle in vitro fertilization success. Fertil Steril. 2013;99:1905–11.

    Article  PubMed  Google Scholar 

  18. Ploschner M, Denkova D, De Camillis S, Das M, Parker LM, Zheng X, et al. Simultaneous super-linear excitation-emission and emission depletion allows imaging of upconversion nanoparticles with higher subdiffraction resolution. Opt Express. 2020;28:24308–26.

    Article  PubMed  Google Scholar 

  19. Lee HJ, Ko T, Park JH, Kim HM, Woo S. Deep ensembles-based AI as a tool to support embryo grading and clinical pregnancy prediction. Hum Reprod. 2022;37.

  20. Lee H, Woo S, Park JH, Jung J, Ko T, Choi S, et al. Deep learning algorithms using embryo morphology can more accurtaly predict gestational sac (G-SAC) than fetal heartbeat possibly due to non embryo factors. ASRM: Fertility and Sterility. 2022;(Supplement):E114–E5.

  21. Ko T, Lee H, Jung J, Park JH, Kim HM, Woo S, et al. Generation of big data for fertility treatment at the national level in South Korea. ASRM: Fertility and Sterility. 2022;(Supplement):E262–E3.

  22. Kundu S. AI in medicine must be explainable. Nat Med. 2021;27:1328.

    Article  CAS  PubMed  Google Scholar 

  23. Zhan Q, Sierra ET, Malmsten J, Ye Z, Rosenwaks Z, Zaninovic N. Blastocyst score, a blastocyst quality ranking tool, is a predictor of blastocyst ploidy and implantation potential. F S Rep. 2020;1:133–41.

    PubMed  PubMed Central  Google Scholar 

  24. Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PLoS One. 2022;17:e0262661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ueno S, Berntsen J, Ito M, Uchiyama K, Okimura T, Yabuuchi A, et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study. Fertil Steril. 2021;116:1172–80.

    Article  PubMed  Google Scholar 

  26. Shafiee H, Kanakasabapathy MK, Bormann C. Digitising the human embryo. The Lancet. 2022;400:1577.

    Article  Google Scholar 

  27. Bormann CL, Kanakasabapathy MK, Thirumalaraju P, Gupta R, Pooniwala R, Kandula H, et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation. Elife. 2020:9.

  28. Kanakasabapathy MK, Thirumalaraju P, Kandula H, Doshi F, Sivakumar AD, Kartik D, et al. Adaptive adversarial neural networks for the analysis of lossy and domain-shifted datasets of medical images. Nat Biomed Eng. 2021;5:571–85.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sanders KD, Silvestri G, Gordon T, Griffin DK. Analysis of IVF live birth outcomes with and without preimplantation genetic testing for aneuploidy (PGT-A): UK Human Fertilisation and Embryology Authority data collection 2016-2018. J Assist Reprod Genet. 2021;38:3277–85.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Papatheodorou A, Gilboa D, Seidman D, Oraiopoulou C, Karagianni M, Papadopoulou MI, et al. P-197 Successful implementation of an end-to-end artificial intelligence (AI) platform in a busy IVF clinic: A prospective observational study. Hum Reprod. 2022;37.

  31. Diakiw SM, Hall JMM, VerMilyea MD, Amin J, Aizpurua J, Giardini L, et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum Reprod. 2022;37:1746–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diakiw SM, Hall JMM, VerMilyea M, Lim AYX, Quangkananurug W, Chanchamroen S, et al. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022;45:1105–17.

    Article  PubMed  Google Scholar 

  33. Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21.

    Article  PubMed  PubMed Central  Google Scholar 

  34. De Gheselle S, Jacques C, Chambost J, Blank C, Declerck K, De Croo I, et al. Machine learning for prediction of euploidy in human embryos: in search of the best-performing model and predictive features. Fertil Steril. 2022;117:738–46.

    Article  PubMed  Google Scholar 

  35. Fernandez Sanchez M, Visnova H, Larsson P, Yding Andersen C, Filicori M, Blockeel C, et al. A randomized, controlled, first-in-patient trial of choriogonadotropin beta added to follitropin delta in women undergoing ovarian stimulation in a long GnRH agonist protocol. Hum Reprod. 2022;37:1161–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Witz CA, Daftary GS, Doody KJ, Park JK, Seifu Y, Yankov VI, et al. Randomized, assessor-blinded trial comparing highly purified human menotropin and recombinant follicle-stimulating hormone in high responders undergoing intracytoplasmic sperm injection. Fertil Steril. 2020;114:321–30.

    Article  CAS  PubMed  Google Scholar 

  37. Robins JC, Khair AF, Widra EA, Alper MM, Nelson WW, Foster ED, et al. Economic evaluation of highly purified human menotropin or recombinant follicle-stimulating hormone for controlled ovarian stimulation in highresponder patients: analysis of the Menopur in Gonadotropin-releasing Hormone Antagonist Single Embryo Transfer-High Responder (MEGASET-HR) trial. F S Rep. 2020;1:257–63.

    PubMed  PubMed Central  Google Scholar 

  38. Anand IS, Carson P, Galle E, Song R, Boehmer J, Ghali JK, et al. Cardiac resynchronization therapy reduces the risk of hospitalizations in patients with advanced heart failure: results from the Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure (COMPANION) trial. Circulation. 2009;119:969–77.

    Article  PubMed  Google Scholar 

  39. Dakka MA, Nguyen TV, Hall JMM, Diakiw SM, VerMilyea M, Linke R, et al. Automated detection of poorquality data: case studies in healthcare. Sci Rep. 2021;11:18005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nguyen TV, Dakka MA, Diakiw SM, VerMilyea MD, Perugini M, Hall JMM, et al. A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data. Sci Rep. 2022;12:8888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Curchoe CL, Bormann CL. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 2019;36:591–600.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Curchoe CL. The paper chase and the big data arms race. J Assist Reprod Genet. 2021.

  43. Curchoe CL, Tarafdar O, Aquilina MC, Seifer DB. SART CORS IVF registry: looking to the past to shape future perspectives. J Assist Reprod Genet. 2022;39:2607–16.

    Article  PubMed  Google Scholar 

  44. Cimadomo D, Soscia D, Casciani V, Innocenti F, Trio S, Chiappetta V, et al. How slow is too slow? A comprehensive portrait of Day 7 blastocysts and their clinical value standardized through artificial intelligence. Hum Reprod. 2022;37:1134–47.

    Article  PubMed  Google Scholar 

  45. Letterie G. Three ways of knowing: the integration of clinical expertise, evidence-based medicine, and artificial intelligence in assisted reproductive technologies. J Assist Reprod Genet. 2021.

  46. Letterie G, Mac DA. Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization. Fertil Steril. 2020;114:1026–31.

    Article  CAS  PubMed  Google Scholar 

  47. Letterie G, MacDonald A, Shi Z. An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions. Reprod Biomed Online. 2022;44:254–60.

    Article  PubMed  Google Scholar 

  48. Gianaroli L, Veiga A, Gordts S, Ebner T, Woodward B, Plas C, et al. ESHRE certification of ART centres for good laboratory and clinical practice. Hum Reprod Open. 2022;(2022):hoac040.

  49. Gill ME, Quaas AM. Looking with new eyes: advanced microscopy and artificial intelligence in reproductive medicine. J Assist Reprod Genet. 2022. https://doi.org/10.1007/s10815-022-02693-9.

  50. Paya E, Bori L, Colomer A, Meseguer M, Naranjo V. Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques. Comput Methods Programs Biomed. 2022;221:106895.

    Article  PubMed  Google Scholar 

  51. Bori L, Meseguer F, Valera MA, Galan A, Remohi J, Meseguer M. The higher the score, the better the clinical outcome: retrospective evaluation of automatic embryo grading as a support tool for embryo selection in IVF laboratories. Hum Reprod. 2022;37:1148–60.

    Article  PubMed  Google Scholar 

  52. Dimitriadis I, Zaninovic N, Badiola AC, Bormann CL. Artificial intelligence in the embryology laboratory: a review. Reprod Biomed Online. 2022;44:435–48.

    Article  PubMed  Google Scholar 

  53. Kanakasabapathy MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P, Venkataraman M, et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med. 2017:9.

  54. Bormann CL, Curchoe CL, Thirumalaraju P, Kanakasabapathy MK, Gupta R, Pooniwala R, et al. Deep learning early warning system for embryo culture conditions and embryologist performance in the ART laboratory. J Assist Reprod Genet. 2021.

  55. Cherouveim P, Jiang VS, Kanakasabapathy MK, et al. Quality assurance (QA) for monitoring the performance of assisted reproductive technology (ART) staff using artificial intelligence (AI). J Assist Reprod Genet. 2022. https://doi.org/10.1007/s10815-022-02649-z.

  56. Cooper AR. Intravaginal embryo culture: a successful alternative to standard IVF that may improve access to care. Curr Opin Obstet Gynecol. 2022;34:179–83.

    Article  PubMed  Google Scholar 

  57. Grill E. Role of the mental health professional in education and support of the medical staff. Fertil Steril. 2015;104:271–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Lynn Curchoe.

Ethics declarations

Conflict of interest

The author is a shareholder for ART Compass, an AIVF technology, a big data and artificial intelligence software platform for IVF lab management.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curchoe, C.L. Proceedings of the first world conference on AI in fertility. J Assist Reprod Genet 40, 215–222 (2023). https://doi.org/10.1007/s10815-022-02704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02704-9

Navigation