Skip to main content
Log in

Prediction of risk factors for first trimester pregnancy loss in frozen-thawed good-quality embryo transfer cycles using machine learning algorithms

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Can the risk factors that cause first trimester pregnancy loss in good-quality frozen-thawed embryo transfer (FET) cycles be predicted using machine learning algorithms?

Methods

This is a retrospective cohort study conducted at Sisli Memorial Hospital, ART and Reproductive Genetics Center, between January 2011 and May 2021. A total of 3805 good-quality FET cycles were included in the study. First trimester pregnancy loss rates were evaluated according to female age, paternal age, body mass index (BMI), diagnosis of infertility, endometrial preparation protocols (natural/artificial), embryo quality (top/good), presence of polycystic ovarian syndrome (PCOS), history of recurrent pregnancy loss (RPL), recurrent implantation failure (RIF), severe male infertility, adenomyosis and endometriosis.

Results

The first trimester pregnancy loss rate was 18.2% (693/ 3805). The presence of RPL increased first trimester pregnancy loss (OR = 7.729, 95%CI = 5.908–10.142, P = 0.000). BMI, which is > 30, increased first trimester pregnancy loss compared to < 25 (OR = 1.418, 95%CI = 1.025–1.950, P = 0.033). Endometrial preparation with artificial cycle increased first trimester pregnancy loss compared to natural cycle (OR = 2.101, 95%CI = 1.630–2.723, P = 0.000). Female age, which is 35–37, increased first trimester pregnancy loss compared to < 30 (OR = 1.617, 95%CI = 1.120–2.316, P = 0.018), and female age, which is > 37, increased first trimester pregnancy loss compared to < 30 (OR = 2.286, 95%CI = 1.146–4,38, P = 0.016). The presence of PCOS increased first trimester pregnancy loss (OR = 1.693, 95%CI = 1.198–2.390, P = 0.002). The number of previous IVF cycles, which is > 3, increased first trimester pregnancy loss compared to < 3 (OR = 2.182, 95%CI = 1.708–2.790, P = 0.000).

Conclusions

History of RPL, RIF, advanced female age, presence of PCOS, and high BMI (> 30 kg/m2) were the factors that increased first trimester pregnancy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 

Similar content being viewed by others

References

  1. Niederberger C, et al. Forty years of IVF. Fertility and Sterility. 2018;110(2):185-324 e5.

    Article  PubMed  Google Scholar 

  2. Cumming G, et al. The emotional burden of miscarriage for women and their partners: trajectories of anxiety and depression over 13 months BJOG: Int J Obstet Gynaecol. 2007;114(9):1138–45.

    Article  CAS  Google Scholar 

  3. Jurkovic D, Overton C. , Bender-Atik R. Diagnosis and management of first trimester miscarriage. BMJ. 2013: 346

  4. Quenby S, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. The Lancet. 2021;397(10285):1658–1667.

  5. Turner K, et al. Stress and anxiety scores in first and repeat IVF cycles: a pilot study. Plos One. 2013;8(5):e63743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Winter E, et al. Early pregnancy loss following assisted reproductive technology treatment. Hum Reprod. 2002;17(12):3220–3.

    Article  PubMed  Google Scholar 

  7. Hipp H, et al. First trimester pregnancy loss after fresh and frozen in vitro fertilization cycles. Fertil Steril. 2016;105(3):722–8.

    Article  PubMed  Google Scholar 

  8. Uyar A, Bener A, Ciray HN. Predictive modeling of implantation outcome in an in vitro fertilization setting: an application of machine learning methods. Med Decis Making. 2015;35(6):714–25.

    Article  PubMed  Google Scholar 

  9. Yi Y, et al. A logistic model to predict early pregnancy loss following in vitro fertilization based on 2601 infertility patients. Reprod Biol Endocrinol. 2016;14(1):1–7.

    Article  Google Scholar 

  10. Liu L, et al. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Comput Methods Programs Biomed. 2020;196:105624.

    Article  PubMed  Google Scholar 

  11. Hassan MR, et al. A machine learning approach for prediction of pregnancy outcome following IVF treatment. Neural Comput Appl. 2020;32(7):2283–97.

    Article  Google Scholar 

  12. Qiu J, et al. Personalized prediction of live birth prior to the first in vitro fertilization treatment: a machine learning method. J Transl Med. 2019;17(1):1–8.

    Article  Google Scholar 

  13. Islam MN, et al. Machine learning to predict pregnancy outcomes: a systematic review, synthesizing framework and future research agenda. BMC Pregnancy Childbirth. 2022;22(1):1–19.

    Article  Google Scholar 

  14. Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013; 99(1):63.

  15. Mascarenhas M et al. Management of recurrent implantation failure: British Fertility Society policy and practice guideline. Human Fertil 2021:1–25.

  16. Géron A. Hands-on machine learning with scikit-learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems. 2019: " O'Reilly Media, Inc.".

  17. Mitchell, T.M, Mitchell TM, Machine learning. Vol. 1. 1997: McGraw-hill New York. 

  18. Tan P-N, Steinbach M, Kumar V. Data mining introduction. Beijing: People’s Posts and Telecommunications Publishing House; 2006.

    Google Scholar 

  19. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  20. Grekousis G, et al. Ranking the importance of demographic, socioeconomic, and underlying health factors on US COVID-19 deaths: a geographical random forest approach. Health Place. 2022;74: 102744.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hosmer DW Jr, Lemeshow S, RX. Sturdivant, Applied logistic regression. Vol. 398. 2013: John Wiley & Sons.

  22. Van Rossum G, Drake F. Python/C Api Manual-Python. 2009;3: CreateSpace.

  23. Team RC. R: A language and environment for statistical computing. 2013

  24. McKinney W. Data structures for statistical computing in python. in Proceedings of the 9th Python in Science Conference. 2010. Austin

  25. Harris CR, et al. Array programming with NumPy. Nature. 2020;585(7825):357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hunter JD. Matplotlib: a 2D graphics environment. Compt Sci Eng. 2007;9(03):90–5.

    Article  Google Scholar 

  27. Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  28. Team RC, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  29. Hosmer DW, Lemeshow S, Cook E. Applied logistic regression. 2nd ed. New York: Jhon Wiley and Sons Inc; 2000.

    Book  Google Scholar 

  30. Carbonnel M, et al. Uterine factors in recurrent pregnancy losses. Fertil Steril. 2021;115(3):538–45.

    Article  PubMed  Google Scholar 

  31. Klimczak AM, et al. Role of the sperm, oocyte, and embryo in recurrent pregnancy loss. Fertil Steril. 2021;115(3):533–7.

    Article  CAS  PubMed  Google Scholar 

  32. Alecsandru D, et al. Immunologic causes and thrombophilia in recurrent pregnancy loss. Fertil Steril. 2021;115(3):561–6.

    Article  CAS  PubMed  Google Scholar 

  33. Morin SJ, et al. Translocations, inversions and other chromosome rearrangements. Fertil Steril. 2017;107(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen NMP, et al. Causative mutations and mechanism of androgenetic hydatidiform moles. Am J Human Genet. 2018;103(5):740–51.

    Article  CAS  Google Scholar 

  35. Kuliev A, et al. Chromosomal abnormalities in a series of 6733 human oocytes in preimplantation diagnosis for age-related aneuploidies. Reprod Biomed Online. 2003;6(1):54–9.

    Article  PubMed  Google Scholar 

  36. Kim YJ, et al. Does a vitrified blastocyst stage embryo transfer program need hormonal priming for endometrial preparation? Journal of Obstetrics and Gynaecology Research. 2010;36(4):783–8.

    Article  PubMed  Google Scholar 

  37. Kawamura T, et al. Clinical outcomes of two different endometrial preparation methods for cryopreserved-thawed embryo transfer in patients with a normal menstrual cycle. Reprod Med Biol. 2007;6(1):53–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alur-Gupta S, et al. Impact of method of endometrial preparation for frozen blastocyst transfer on pregnancy outcome: a retrospective cohort study. Fertil Steril. 2018;110(4):680–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Groenewoud ER, Cohlen BJ, Macklon NS. Programming the endometrium for deferred transfer of cryopreserved embryos: hormone replacement versus modified natural cycles. Fertil Steril. 2018;109(5):768–74.

    Article  CAS  PubMed  Google Scholar 

  40. Lathi RB, et al. Frozen blastocyst embryo transfer using a supplemented natural cycle protocol has a similar live birth rate compared to a programmed cycle protocol. J Assist Reprod Genet. 2015;32(7):1057–62.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Armas DFC et al. Frozen-thawed blastocyst transfer in natural cycle increase implantation rates compared artificial cycle. Gynecol Endocrinol. 2019.

  42. Morozov V, et al. Natural cycle cryo-thaw transfer may improve pregnancy outcome. J Assist Reprod Genet. 2007;24(4):119–23.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Givens CR, et al. Outcomes of natural cycles versus programmed cycles for 1677 frozen–thawed embryo transfers. Reprod Biomed Online. 2009;19(3):380–4.

    Article  PubMed  Google Scholar 

  44. Tomás C, et al. Pregnancy loss after frozen-embryo transfer—a comparison of three protocols. Fertil Steril. 2012;98(5):1165–9.

    Article  PubMed  Google Scholar 

  45. Hancke K, et al. Patients undergoing frozen-thawed embryo transfer have similar live birth rates in spontaneous and artificial cycles. J Assist Reprod Genet. 2012;29(5):403–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Patel S, et al. Estradiol elicits proapoptotic and antiproliferative effects in human trophoblast cells. Biology of reproduction. 2015;93(3):7–1-10.

    Article  Google Scholar 

  47. Teede HJ, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110(3):364–79.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Craig LB, Ke RW, Kutteh WH. Increased prevalence of insulin resistance in women with a history of recurrent pregnancy loss. Fertil Steril. 2002;78(3):487–90.

    Article  PubMed  Google Scholar 

  49. Tian L, et al. Insulin resistance increases the risk of spontaneous abortion after assisted reproduction technology treatment. J Clin Endocrinol Metab. 2007;92(4):1430–3.

    Article  CAS  PubMed  Google Scholar 

  50. Tesarik J. Effects of LH on oocyte yield and developmental competence. Hum Reprod. 2003;18(6):1358–60.

    Article  Google Scholar 

  51. van der Spuy ZM, Dyer SJ. The pathogenesis of infertility and early pregnancy loss in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):755–71.

    Article  PubMed  Google Scholar 

  52. Kurzawa R, et al. Comparison of embryological and clinical outcome in GnRH antagonist vs GnRH agonist protocols for in vitro fertilization in PCOS non-obese patients A prospective randomized study. J Assist Reprod Genet. 2008;25(8):365–74.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tesarik J, Mendoza C. Nongenomic effects of 17 beta-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab. 1995;80(4):1438–43.

    CAS  PubMed  Google Scholar 

  54. Weghofer A, et al. Lack of association between polycystic ovary syndrome and embryonic aneuploidy. Fertil Steril. 2007;88(4):900–5.

    Article  PubMed  Google Scholar 

  55. Freis A, et al. Effects of a hyperandrogenaemic state on the proliferation and decidualization potential in human endometrial stromal cells. Arch Gynecol Obstet. 2017;295(4):1005–13.

    Article  CAS  PubMed  Google Scholar 

  56. Tuckerman EM, et al. Do androgens have a direct effect on endometrial function? An in vitro study. Fertil Steril. 2000;74(4):771–9.

    Article  CAS  PubMed  Google Scholar 

  57. Liu L, et al. A comparison of the miscarriage rate between women with and without polycystic ovarian syndrome undergoing IVF treatment. Eur J Obstet Gynecol Reprod Biol. 2014;176:178–82.

    Article  PubMed  Google Scholar 

  58. Shang K, et al. Endometrial abnormality in women with polycystic ovary syndrome. Reprod Sci. 2012;19(7):674–83.

    Article  PubMed  Google Scholar 

  59. Rittenberg V, et al. Effect of body mass index on IVF treatment outcome: an updated systematic review and meta-analysis. Reprod Biomed Online. 2011;23(4):421–39.

    Article  PubMed  Google Scholar 

  60. Sermondade N, et al. Female obesity is negatively associated with live birth rate following IVF: a systematic review and meta-analysis. Hum Reprod Update. 2019;25(4):439–51.

    Article  CAS  PubMed  Google Scholar 

  61. Bellver J, et al. Obesity and poor reproductive outcome: the potential role of the endometrium. Fertil Steril. 2007;88(2):446–51.

    Article  PubMed  Google Scholar 

  62. Gosman GG, Katcher HI, Legro RS. Obesity and the role of gut and adipose hormones in female reproduction. Hum Reprod Update. 2006;12(5):585–601.

    Article  CAS  PubMed  Google Scholar 

  63. Wang JX, Davies MJ, Norman RJ. Obesity increases the risk of spontaneous abortion during infertility treatment. Obes Res. 2002;10(6):551–4.

    Article  PubMed  Google Scholar 

  64. Yang X, Zheng B, Wang Y. Effect of pre-pregnancy body mass index on neonatal outcomes in women undergoing autologous frozen-thawed embryo transfer. Fertil Steril. 2021;4(116):1010–19.

  65. Zhang J, et al. Effect of body mass index on pregnancy outcomes in a freeze-all policy: an analysis of 22,043 first autologous frozen-thawed embryo transfer cycles in China. BMC Med. 2019;17(1):1–9.

    Article  Google Scholar 

  66. Bellver J, et al. Female obesity impairs in vitro fertilization outcome without affecting embryo quality. Fertil Steril. 2010;93(2):447–54.

    Article  PubMed  Google Scholar 

  67. Luke B, et al. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates†. Hum Reprod. 2010;26(1):245–52.

    Article  PubMed  Google Scholar 

  68. Bellver J et al. Obesity reduces uterine receptivity: clinical experience from 9,587 first cycles of ovum donation with normal weight donors. Fertil Steril. 2013;100(4):1050–1058. e2.

  69. Comstock IA, et al. Does an increased body mass index affect endometrial gene expression patterns in infertile patients? A functional genomics analysis. Fertil Steril. 2017;107(3):740-748.e2.

    Article  PubMed  Google Scholar 

  70. Boots CE, Bernardi LA, Stephenson MD. Frequency of euploid miscarriage is increased in obese women with recurrent early pregnancy loss. Fertil Steril. 2014;102(2):455–9.

    Article  PubMed  Google Scholar 

  71. Tremellen K, Pearce K, Zander-Fox D. Increased miscarriage of euploid pregnancies in obese women undergoing cryopreserved embryo transfer. Reprod Biomed Online. 2017;34(1):90–7.

    Article  PubMed  Google Scholar 

  72. Schoolcraft WB, et al. Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial. Fertil Steril. 2009;92(1):157–62.

    Article  PubMed  Google Scholar 

  73. Harton GL, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703.

    Article  CAS  PubMed  Google Scholar 

  74. Seshadri S, et al. Assisted conception in women of advanced maternal age. Best Pract Res Clin Obstet Gynaecol. 2021;70:10–20.

    Article  CAS  PubMed  Google Scholar 

  75. Franasiak JM et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil steril. 2014;101(3):656–663. e1.

  76. Ubaldi FM, et al. Advanced maternal age in IVF: still a challenge? The present and the future of its treatment. Front Endocrinol. 2019;10:94.

    Article  Google Scholar 

  77. Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11(5):797–813.

    Article  PubMed  Google Scholar 

  78. Capalbo A, et al. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23(6):706–22.

    Article  CAS  PubMed  Google Scholar 

  79. Hill MJ. Recurrent implantation failure: Sapere aude. Fertil Steril. 2021;116(6):1430–1.

    Article  PubMed  Google Scholar 

  80. Franasiak JM, et al. A review of the pathophysiology of recurrent implantation failure. Fertil Steril. 2021;116(6):1436–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonul Ozer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, G., Akca, A., Yuksel, B. et al. Prediction of risk factors for first trimester pregnancy loss in frozen-thawed good-quality embryo transfer cycles using machine learning algorithms. J Assist Reprod Genet 40, 279–288 (2023). https://doi.org/10.1007/s10815-022-02645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02645-3

Keywords

Navigation