Skip to main content

Advertisement

Log in

Identification of new variants and candidate genes in women with familial premature ovarian insufficiency using whole-exome sequencing

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract 

Purpose

To identify candidate variants in genes possibly associated with premature ovarian insufficiency (POI).

Methods

Fourteen women, from 7 families, affected by idiopathic POI were included. Additionally, 98 oocyte donors of the same ethnicity were enrolled as a control group. Whole-exome sequencing (WES) was performed in 14 women with POI to identify possibly pathogenic variants in genes potentially associated with the ovarian function. The candidate genes selected in POI patients were analysed within the exome results of oocyte donors.

Results

After the variant filtering in the WES analysis of 7 POI families, 23 possibly damaging genetic variants were identified in 22 genes related to POI or linked to ovarian physiology. All variants were heterozygous and five of the seven families carried two or more variants in different genes. We have described genes that have never been associated to POI pathology; however, they are involved in important biological processes for ovarian function. In the 98 oocyte donors of the control group, we found no potentially pathogenic variants among the 22 candidate genes.

Conclusion

WES has previously shown as an efficient tool to identify causative genes for ovarian failure. Although some studies have focused on it, and many genes are identified, this study proposes new candidate genes and variants, having potentially moderate/strong functional effects, associated with POI, and argues for a polygenic etiology of POI in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–37. https://doi.org/10.1093/humrep/dew027.

    Article  CAS  Google Scholar 

  2. Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci. 2017;10:290. https://doi.org/10.3389/fnmol.2017.00290.

    Article  CAS  Google Scholar 

  3. Tenenbaum-Rakover Y, Weinberg-Shukron A, Renbaum P, Lobel O, Eideh H, Gulsuner S, et al. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. J Med Genet. 2015;52(6):391–9. https://doi.org/10.1136/jmedgenet-2014-102921.

    Article  CAS  Google Scholar 

  4. Li L, Wang B, Zhang W, Chen B, Luo M, Wang J, et al. A homozygous NOBOX truncating variant causes defective transcriptional activation and leads to primary ovarian insufficiency. Hum Reprod. 2017;32(1):248–55. https://doi.org/10.1093/humrep/dew271.

    Article  CAS  Google Scholar 

  5. Yang X, Zhang X, Jiao J, Zhang F, Pan Y, Wang Q, et al. Rare variants in FANCA induce premature ovarian insufficiency. Hum Genet. 2019;138(11–12):1227–36. https://doi.org/10.1007/s00439-019-02059-9.

    Article  CAS  Google Scholar 

  6. Jaillard S, Bell K, Akloul L, Walton K, McElreavy K, Stocker WA, et al. New insights into the genetic basis of premature ovarian insufficiency: novel causative variants and candidate genes revealed by genomic sequencing. Maturitas. 2020;141:9–19. https://doi.org/10.1016/j.maturitas.2020.06.004.

    Article  CAS  Google Scholar 

  7. Jiao X, Ke H, Qin Y, Chen ZJ. Molecular genetics of premature ovarian insufficiency. Trends Endocrinol Metab. 2018;29(11):795–807. https://doi.org/10.1016/j.tem.2018.07.002.

    Article  CAS  Google Scholar 

  8. Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev. 2016;37(6):609–35. https://doi.org/10.1210/er.2016-1047.

    Article  Google Scholar 

  9. Bouilly J, Beau I, Barraud S, Bernard V, Azibi K, Fagart J, et al. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian insufficiency. J Clin Endocrinol Metab. 2016;101(12):4541–50. https://doi.org/10.1210/jc.2016-2152.

    Article  CAS  Google Scholar 

  10. Patiño LC, Beau I, Carlosama C, Buitrago JC, González R, Suárez CF, et al. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing. Hum Reprod. 2017;32(7):1512–20. https://doi.org/10.1093/humrep/dex089.

    Article  CAS  Google Scholar 

  11. Tang R, Yu Q. Novel variants in women with premature ovarian function decline identified via whole-exome sequencing. J Assist Reprod Genet. 2020;37(10):2487–502. https://doi.org/10.1007/s10815-020-01919-y.

    Article  Google Scholar 

  12. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  Google Scholar 

  13. Jaillard S, Akloul L, Beaumont M, Hamdi-Roze H, Dubourg C, Odent S, et al. Array-CGH diagnosis in ovarian failure: identification of new molecular actors for ovarian physiology. J Ovarian Res. 2016;9(1):63. https://doi.org/10.1186/s13048-016-0272-5.

    Article  CAS  Google Scholar 

  14. Gorsi B, Hernandez E, Moore MB, Moriwaki M, Chow CY, Coelho E, et al. Causal and candidate gene variants in a large cohort of women with primary ovarian insufficiency. J Clin Endocrinol Metab. 2022;107(3):685–714. https://doi.org/10.1210/clinem/dgab775.

    Article  Google Scholar 

  15. Turkyilmaz A, Alavanda C, Ates EA, Geckinli BB, Polat H, Gokcu M, Karakaya T, Cebi AH, Soylemez MA, Guney Aİ, Ata P, Arman A. Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency. J Assist Reprod Genet. 2022;39(3):695–710. https://doi.org/10.1007/s10815-022-02408-0.

    Article  Google Scholar 

  16. Lee AS, Rusch J, Lima AC, Usmani A, Huang N, Lepamets M, et al. Rare mutations in the complement regulatory gene CSMD1 are associated with male and female infertility. Nat Commun. 2019;10(1):4626. https://doi.org/10.1038/s41467-019-12522-w.

    Article  CAS  Google Scholar 

  17. Flaws JA, Kugu K, Trbovich AM, DeSanti A, Tilly KI, Hirshfield AN, et al. Interleukin-1 beta-converting enzyme-related proteases (IRPs) and mammalian cell death: dissociation of IRP-induced oligonucleosomal endonuclease activity from morphological apoptosis in granulosa cells of the ovarian follicle. Endocrinology. 1995;136(11):5042–53. https://doi.org/10.1210/endo.136.11.7588240.

    Article  CAS  Google Scholar 

  18. Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 1998;12(9):1304–14. https://doi.org/10.1101/gad.12.9.1304.

    Article  CAS  Google Scholar 

  19. Hanoux V, Pairault C, Bakalska M, Habert R, Livera G. Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary. Cell Death Differ. 2007;14(4):671–81. https://doi.org/10.1038/sj.cdd.4402052.

    Article  CAS  Google Scholar 

  20. Men NT, Kikuchi K, Furusawa T, Dang-Nguyen TQ, Nakai M, Fukuda A, et al. Expression of DNA repair genes in porcine oocytes before and after fertilization by ICSI using freeze-dried sperm. Anim Sci J. 2016;87(11):1325–33. https://doi.org/10.1111/asj.12554.

    Article  CAS  Google Scholar 

  21. Sabatella M, Thijssen KL, Davó-Martínez C, Vermeulen W, Lans H. Tissue-specific DNA repair activity of ERCC-1/XPF-1. Cell Rep. 2021;34(2):108608. https://doi.org/10.1016/j.celrep.2020.108608.

    Article  CAS  Google Scholar 

  22. Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, et al. Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci U S A. 2004;101(19):7323–8. https://doi.org/10.1073/pnas.0307061101.

    Article  CAS  Google Scholar 

  23. Hanna CB, Yao S, Patta MC, Jensen JT, Wu X. Expression of insulin-like 3 (INSL3) and differential splicing of its receptor in the ovary of rhesus macaques. Reprod Biol Endocrinol. 2010;8:150. https://doi.org/10.1186/1477-7827-8-150.

    Article  CAS  Google Scholar 

  24. Satchell L, Glister C, Bleach EC, Glencross RG, Bicknell AB, Dai Y, et al. Ovarian expression of insulin-like peptide 3 (INSL3) and its receptor (RXFP2) during development of bovine antral follicles and corpora lutea and measurement of circulating INSL3 levels during synchronized estrous cycles. Endocrinology. 2013;154(5):1897–906. https://doi.org/10.1210/en.2012-2232.

    Article  CAS  Google Scholar 

  25. Dickinson RE, Hryhorskyj L, Tremewan H, Hogg K, Thomson AA, McNeilly AS, et al. Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary. Reproduction. 2010;139(2):395–407. https://doi.org/10.1530/REP-09-0182.

    Article  CAS  Google Scholar 

  26. Qin N, Fan XC, Zhang YY, Xu XX, Tyasi TL, Jing Y, et al. New insights into implication of the SLIT/ROBO pathway in the prehierarchical follicle development of hen ovary. Poult Sci. 2015;94(9):2235–46. https://doi.org/10.3382/ps/pev185.

    Article  CAS  Google Scholar 

  27. Huntriss J, Hinkins M, Picton HM. cDNA cloning and expression of the human NOBOX gene in oocytes and ovarian follicles. Mol Hum Reprod. 2006;12(5):283–9. https://doi.org/10.1093/molehr/gal035.

    Article  CAS  Google Scholar 

  28. Feranil JB, Isobe N, Nakao T. Immunolocalization of von Willebrand factor and vascular endothelial growth factor during follicular atresia in the swamp buffalo ovary. J Reprod Dev. 2005;51(4):419–26. https://doi.org/10.1262/jrd.17011.

    Article  CAS  Google Scholar 

  29. Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M, et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell. 2020;180(3):585-600.e19. https://doi.org/10.1016/j.cell.2020.01.009.

    Article  CAS  Google Scholar 

  30. McRae RS, Johnston HM, Mihm M, O’Shaughnessy PJ. Changes in mouse granulosa cell gene expression during early luteinization. Endocrinology. 2005;146(1):309–17. https://doi.org/10.1210/en.2004-0999.

    Article  CAS  Google Scholar 

  31. Li J, Li C, Li Q, Li WT, Li H, Li GX, et al. Identification of the Key microRNAs and miRNA-mRNA interaction networks during the ovarian development of hens. Animals (Basel). 2020;10(9). https://doi.org/10.3390/ani10091680.

  32. Tan M, Tol HTAV, Rosenkranz D, Roovers EF, Damen MJ, Stout TAE, et al. PIWIL3 forms a complex with TDRKH in mammalian oocytes. Cells. 2020;9(6). https://doi.org/10.3390/cells9061356.

  33. Kurowska P, Mlyczyńska E, Dawid M, Dupont J, Rak A. Role of vaspin in porcine ovary: effect on signaling pathways and steroid synthesis via GRP78 receptor and protein kinase A†. Biol Reprod. 2020;102(6):1290–305. https://doi.org/10.1093/biolre/ioaa027.

    Article  Google Scholar 

  34. Johnson LE, DeLuca HF. Vitamin D receptor null mutant mice fed high levels of calcium are fertile. J Nutr. 2001;131(6):1787–91. https://doi.org/10.1093/jn/131.6.1787.

    Article  CAS  Google Scholar 

  35. Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, et al. Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci U S A. 2001;98(13):7498–503. https://doi.org/10.1073/pnas.131029498.

    Article  CAS  Google Scholar 

  36. Talpur HS, Worku T, Rehman ZU, Dad R, Bhattarai D, Bano I, et al. Knockdown of melatonin receptor 1 and induction of follicle-stimulating hormone on the regulation of mouse granulosa cell function. Reprod Biol. 2017;17(4):380–8. https://doi.org/10.1016/j.repbio.2017.10.005.

    Article  Google Scholar 

  37. Worku T, Wang K, Ayers D, Wu D, Ur Rehman Z, Zhou H, et al. Regulatory roles of ephrinA5 and its novel signaling pathway in mouse primary granulosa cell apoptosis and proliferation. Cell Cycle. 2018;17(7):892–902. https://doi.org/10.1080/15384101.2018.1456297.

    Article  CAS  Google Scholar 

  38. Chen CL, Fu XF, Wang LQ, Wang JJ, Ma HG, Cheng SF, et al. Primordial follicle assembly was regulated by Notch signaling pathway in the mice. Mol Biol Rep. 2014;41(3):1891–9. https://doi.org/10.1007/s11033-014-3038-4.

    Article  CAS  Google Scholar 

  39. Prasasya RD, Mayo KE. Notch signaling regulates differentiation and steroidogenesis in female mouse ovarian granulosa cells. Endocrinology. 2018;159(1):184–98. https://doi.org/10.1210/en.2017-00677.

    Article  CAS  Google Scholar 

  40. Vanorny DA, Prasasya RD, Chalpe AJ, Kilen SM, Mayo KE. Notch signaling regulates ovarian follicle formation and coordinates follicular growth. Mol Endocrinol. 2014;28(4):499–511. https://doi.org/10.1210/me.2013-1288.

    Article  CAS  Google Scholar 

  41. Hubbard N, Prasasya RD, Mayo KE. Activation of notch signaling by oocytes and Jag1 in mouse ovarian granulosa cells. Endocrinology. 2019;160(12):2863–76. https://doi.org/10.1210/en.2019-00564.

    Article  CAS  Google Scholar 

  42. Li J, Zhao D, Guo C, Mi Y, Zhang C. Involvement of notch signaling in early chick ovarian follicle development. Cell Biol Int. 2016;40(1):65–73. https://doi.org/10.1002/cbin.10538.

    Article  CAS  Google Scholar 

  43. Guo X, Wang Y, Chen Q, Yuan Z, Chen Y, Guo M, et al. The role of PTHLH in ovarian follicle selection, its transcriptional regulation and genetic effects on egg laying traits in hens. Front Genet. 2019;10:430. https://doi.org/10.3389/fgene.2019.00430.

    Article  CAS  Google Scholar 

  44. Fowler PA, Anderson RA, Saunders PT, Kinnell H, Mason JI, Evans DB, et al. Development of steroid signaling pathways during primordial follicle formation in the human fetal ovary. J Clin Endocrinol Metab. 2011;96(6):1754–62. https://doi.org/10.1210/jc.2010-2618.

    Article  CAS  Google Scholar 

  45. Richard S, Baltz JM. Preovulatory suppression of mouse oocyte cell volume-regulatory mechanisms is via signalling that is distinct from meiotic arrest. Sci Rep. 2017;7(1):702. https://doi.org/10.1038/s41598-017-00771-y.

    Article  CAS  Google Scholar 

  46. Richard S, Tartia AP, Boison D, Baltz JM. Mouse oocytes acquire mechanisms that permit independent cell volume regulation at the end of oogenesis. J Cell Physiol. 2017;232(9):2436–46. https://doi.org/10.1002/jcp.25581.

    Article  CAS  Google Scholar 

  47. Zhang LQ, Zhang XN, Gao Y, Ma XB, Dai LS, Jiang H, et al. Identification of differentially expressed proteins in the ovaries of menopausal women. Arch Gynecol Obstet. 2014;290(6):1179–86. https://doi.org/10.1007/s00404-014-3357-7.

    Article  CAS  Google Scholar 

  48. Liu H, Wei X, Sha Y, Liu W, Gao H, Lin J, et al. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention. J Ovarian Res. 2020;13(1):114. https://doi.org/10.1186/s13048-020-00716-6.

    Article  CAS  Google Scholar 

  49. Yang Y, Guo T, Liu R, Ke H, Xu W, Zhao S, et al. FANCL gene mutations in premature ovarian insufficiency. Hum Mutat. 2020;41(5):1033–41. https://doi.org/10.1002/humu.23997.

    Article  CAS  Google Scholar 

  50. Guo T, Zheng Y, Li G, Zhao S, Ma J, Qin Y. Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency. Fertil Steril. 2020;113(4):845–52. https://doi.org/10.1016/j.fertnstert.2019.11.015.

    Article  CAS  Google Scholar 

  51. Daum H, Zlotogora J. Fanconi anemia gene variants in patients with gonadal dysfunction. Reprod Sci. 2022;29(5):1408–13. https://doi.org/10.1007/s43032-021-00582-7.

    Article  Google Scholar 

  52. Chakravorty S, Hegde M. Inferring the effect of genomic variation in the new era of genomics. Hum Mutat. 2018;39(6):756–73. https://doi.org/10.1002/humu.23427.

    Article  Google Scholar 

  53. Zhao M, Feng F, Chu C, Yue W, Li L. A novel EIF4ENIF1 mutation associated with a diminished ovarian reserve and premature ovarian insufficiency identified by whole-exome sequencing. J Ovarian Res. 2019;12(1):119. https://doi.org/10.1186/s13048-019-0595-0.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ania Pitas for the revision and correction of the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Morales.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, R., Lledo, B., Ortiz, J.A. et al. Identification of new variants and candidate genes in women with familial premature ovarian insufficiency using whole-exome sequencing. J Assist Reprod Genet 39, 2595–2605 (2022). https://doi.org/10.1007/s10815-022-02629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02629-3

Keywords

Navigation