Skip to main content

Advertisement

Log in

Effects of oocyte vitrification on gene expression in the liver and kidney tissues of adult offspring

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Oocyte vitrification is an important assisted reproductive technology (ART) that preserves the fertility of unmarried patients with malignant tumors, and promotes the development of the oocyte donation program. In recent years, the effects of ART, including the vitrification of oocytes and embryos on the health of offspring, have attracted much attention; however, it is difficult to conduct long-term follow-up and biochemical evaluation in humans. In this study, we detected the effect of oocyte vitrification on gene expression in the organs of adult mice offspring by RNA sequencing for the first time. Our results showed that only a small amount of gene expression was significantly affected. Seven genes (Tpm3, Hspe1-rs1, Ntrk2, Cyp4a31, Asic5, Cyp4a14, Retsat) were abnormally expressed in the liver, and ten genes (Lbp, Hspe1-rs1, Prxl2b, Pfn3, Gm9008, Bglap3, Col8a1, Hmgcr, Ero1lb, Ifi44l) were abnormal in the kidney. Several genes were related to metabolism and disease occurrence in the liver or kidney. Besides, we paid special attention to the expression of known imprinted genes and DNA methylation–related genes in adult organs, which are susceptible to oocyte cryopreservation in the preimplantation stage. As a result, some of these transcripts were detected in adult organs, but they were not affected by oocyte vitrification. In conclusion, we first report that oocyte vitrification did not significantly change the global gene expression in offspring organs; nonetheless, it can still influence the transcription of a few functional genes. The potential adverse effects caused by oocyte vitrification need attention and further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ART:

Assisted reproductive technology

ICSI:

Intracytoplasmic sperm injection

RNA-seq:

RNA sequencing

TG:

Triglyceride

COCs:

Cumulus-oocyte complexes

ES:

Equilibrium solution

EG:

Ethylene glycol

DMSO:

Dimethyl sulfide

VS:

Vitrification solution

TS:

Thawing solution

DS:

Diluting solution

WS:

Washing solution

HTF:

Human tubal fluid

rRNA:

Ribosome RNA

FPKM:

Fragment per kilobase of transcript per million mapped reads

FC:

Fold change

PCA:

Principal component analysis

DEGs:

Differentially expressed genes

APA:

Advanced paternal age

NAFLD:

Nonalcoholic fatty liver disease

ROS:

Reactive oxygen free radicals

EMT:

Epithelial-mesenchymal transition

HCC:

Hepatocellular carcinoma

ASICs:

Acid-sensing ion channels

LBP:

Lipopolysaccharide-binding protein

ICRs:

Imprinted control regions

References

  1. Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, Klinger FG. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update. 2019;25(6):673–93.

    Article  CAS  Google Scholar 

  2. Coello A, Pellicer A, Cobo AJMG. Vitrification of human oocytes. Minerva Ginecol. 2018;70(4):415–23.

  3. Chronopoulou E, Raperport C, Sfakianakis A, Srivastava G, Homburg R. Elective oocyte cryopreservation for age-related fertility decline. J Assist Reprod Genet. 2021;38(5):1177–86.

    Article  CAS  Google Scholar 

  4. Bulgarelli DL, Vireque AA, Pitangui-Molina CP, Silva-de-Sá MF, de Sá Rosa ACJ. Reduced competence of immature and mature oocytes vitrified by Cryotop method: assessment by in vitro fertilization and parthenogenetic activation in a bovine model. Zygote. 2017;25(2):222–30.

    Article  CAS  Google Scholar 

  5. Liu M-H, Zhou W-H, Chu D-P, Fu L, Sha W, Li Y. Ultrastructural changes and methylation of human oocytes vitrified at the germinal vesicle stage and matured in vitro after thawing. Gynecol Obstet Invest. 2017;82(3):252–61.

    Article  CAS  Google Scholar 

  6. Huang J, Ma Y, Wei S, Pan B, Qi Y, Hou Y, Meng Q, Zhou G, Han H. Dynamic changes in the global transcriptome of bovine germinal vesicle oocytes after vitrification followed by in vitro maturation. Reprod Fertil Dev. 2018;30(10):1298–313.

    Article  CAS  Google Scholar 

  7. Jia BY, Xiang DC, Quan GB, Zhang B, Shao QY, Hong QH, Wu GQ. Transcriptome analysis of porcine immature oocytes and surrounding cumulus cells after vitrification and in vitro maturation. Theriogenology. 2019;134:90–7.

    Article  CAS  Google Scholar 

  8. Wang N, Li CY, Zhu HB, Hao HS, Wang HY, Yan CL, Zhao SJ, Du WH, Wang D, Liu Y, Pang YW, Zhao XM. Effect of vitrification on the mRNA transcriptome of bovine oocytes. Reprod Domest Anim Zuchthygiene. 2017;52(4):531–541.

  9. Zhao XM, Hao HS, Du WH, Zhao SJ, Wang HY, Wang N, Wang D, Liu Y, Qin T, Zhu HB. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J Pineal Res. 2016;60(2):132–41.

    Article  CAS  Google Scholar 

  10. Dai J, Wu C, Muneri CW, Niu Y, Zhang S, Rui R, Zhang D. Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology. 2015;71(2):291–8.

    Article  CAS  Google Scholar 

  11. Anchamparuthy VM, Pearson RE, Gwazdauskas FC. Expression pattern of apoptotic genes in vitrified-thawed bovine oocytes. Reprod Domest Anim Zuchthygiene. 2010;45(5):e83–90.

  12. Habibi A, Farrokhi N, Moreira da Silva F, Bettencourt BF, Bruges-Armas J, Amidi F, Hosseini A. The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR. J Assist Reprod Genet. 2010;27(11):599–604.

  13. Succu S, Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, Berlinguer F, Naitana S, Ledda S. Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol Reprod Dev. 2008;75(3):538–46.

    Article  CAS  Google Scholar 

  14. Monzo C, Haouzi D, Roman K, Assou S, Dechaud H, Hamamah S. Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Hum Reprod. 2012;27(7):2160–8.

    Article  CAS  Google Scholar 

  15. Chamayou S, Bonaventura G, Alecci C, Tibullo D, Di Raimondo F, Guglielmino A, Barcellona ML. Consequences of metaphase II oocyte cryopreservation on mRNA content. Cryobiology. 2011;62(2):130–4.

    Article  CAS  Google Scholar 

  16. Denomme MM, Mann MR. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction. 2012;144(4):393–409.

    Article  CAS  Google Scholar 

  17. Liang Y, Fu XW, Li JJ, Yuan DS, Zhu SE. DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: effect of oocyte vitrification. Zygote (Cambridge, England). 2014;22(2):138–45.

    Article  CAS  Google Scholar 

  18. Ma Y, Long C, Liu G, Bai H, Ma L, Bai T, Zuo Y, Li S. WGBS combined with RNA-seq analysis revealed that Dnmt1 affects the methylation modification and gene expression changes during mouse oocyte vitrification. Theriogenology. 2022;177:11–21.

    Article  CAS  Google Scholar 

  19. Zhao XM, Ren JJ, Du WH, Hao HS, Wang D, Qin T, Liu Y, Zhu HB. Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes. Fertil Steril. 2013;100(1):256–61.

    Article  CAS  Google Scholar 

  20. Cheng KR, Fu XW, Zhang RN, Jia GX, Hou YP, Zhu SE. Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts. Fertil Steril. 2014;102(4):1183–1190 e3.

  21. Hu W, Marchesi D, Qiao J, Feng HL. Effect of slow freeze versus vitrification on the oocyte: an animal model. Fertil Steril 2012;98(3):752–760 e3.

  22. Zhao YH, Wang JJ, Zhang PP, Hao HS, Pang YW, Wang HY, Du WH, Zhao SJ, Ruan WM, Zou HY, Hao T, Zhu HB, Zhao XM. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reprod Fertil Dev. 2020;32(7):676–89.

    Article  CAS  Google Scholar 

  23. Chen H, Zhang L, Deng T, Zou P, Wang Y, Quan F, Zhang Y. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology. 2016;86(3):868–78.

    Article  CAS  Google Scholar 

  24. Chen H, Zhang L, Wang Z, Chang H, Xie X, Fu L, Zhang Y, Quan F. Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Mol Reprod Dev. 2019;86(7):862–70.

    Article  CAS  Google Scholar 

  25. De Munck N, Petrussa L, Verheyen G, Staessen C, Vandeskelde Y, Sterckx J, Bocken G, Jacobs K, Stoop D, De Rycke M. Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy) methylation analysis consolidate the safety of human oocyte vitrification. Mhr. 2015;21(6):535–544.

  26. Al-Khtib M, Perret A, Khoueiry R, Ibala-Romdhane S, Blachère T, Greze C, Lornage J, Lefèvre A. Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro. Fertil Steril. 2011;95(6):1955–60.

    Article  CAS  Google Scholar 

  27. Liu XJ, Jia GH, Zhang G, Tian KY, Wang HX, Zhong WY, Zhang YM, Lu XL, Li JT, Zhang JM. Effect of vitrification of mouse oocyte on the behavior of adult offspring. Eur J Obstet Gynecol Reprod Biol. 2013;169(2):279–82.

    Article  Google Scholar 

  28. Huo Y, Qin Q, Zhang L, Kuo Y, Wang H, Yan L, Li R, Zhang X, Yan J, Qiao J. Effects of oocyte vitrification on the behaviors and physiological indexes of aged first filial generation mice. Cryobiology. 2020;95:20–8.

  29. Cobo A, Serra V, Garrido N, Olmo I, Pellicer A, Remohi J. Obstetric and perinatal outcome of babies born from vitrified oocytes. Fertil Steril. 2014;102(4):1006–1015 e4.

  30. Martinez M, Rabadan S, Domingo J, Cobo A, Pellicer A, Garcia-Velasco JA. Obstetric outcome after oocyte vitrification and warming for fertility preservation in women with cancer. Reprod Biomed Online. 2014;29(6):722–8.

    Article  Google Scholar 

  31. Chian RC, Huang JY, Tan SL, Lucena E, Saa A, Rojas A, Ruvalcaba Castellon LA, Garcia Amador MI, Montoya Sarmiento JE. Obstetric and perinatal outcome in 200 infants conceived from vitrified oocytes. Reprod Biomed Online. 2008;16(5):608–10.

    Article  Google Scholar 

  32. Ho JR, Woo I, Louie K, Salem W, Jabara SI, Bendikson KA, Paulson RJ, Chung K. A comparison of live birth rates and perinatal outcomes between cryopreserved oocytes and cryopreserved embryos. J Assist Reprod Genet. 2017;34(10):1359–66.

    Article  Google Scholar 

  33. Mascarenhas M, Mehlawat H, Kirubakaran R, Bhandari H, Choudhary M. Live birth and perinatal outcomes using cryopreserved oocytes: an analysis of the Human Fertilisation and Embryology Authority database from 2000 to 2016 using three clinical models. Hum Reprod. 2021;36(5):1416–26.

    Article  CAS  Google Scholar 

  34. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18(6):769–76.

    Article  CAS  Google Scholar 

  35. Van Reckem M, Blockeel C, Bonduelle M, Buysse A, Roelants M, Verheyen G, Tournaye H, Hes F, Belva F. Health of 2-year-old children born after vitrified oocyte donation in comparison with peers born after fresh oocyte donation. Hum Reprod Open. 2021;2021(1):hoab002.

  36. Eaton JL, Truong T, Li YJ, Polotsky AJ. Prevalence of a good perinatal outcome with cryopreserved compared with fresh donor oocytes. Obstet Gynecol. 2020;135(3):709–16.

    Article  Google Scholar 

  37. Levi Setti PE, Albani E, Morenghi E, Morreale G, Delle Piane L, Scaravelli G, Patrizio P. Comparative analysis of fetal and neonatal outcomes of pregnancies from fresh and cryopreserved/thawed oocytes in the same group of patients. Fertil Steril. 2013;100(2):396–401.

    Article  Google Scholar 

  38. Da Luz CM, Caetano MA, Berteli TS, Vireque AA, Navarro PA. The impact of oocyte vitrification on offspring: a systematic review. Reprod Sci. 2022.

  39. Chen H, Zhang L, Wang Z, Chang H, Xie X, Fu L, Zhang Y, Quan F. Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Mol Reprod Dev. 2019;86(7):862–70.

  40. Mao Y, Zhao Y, Luo S, Chen H, Liu X, Wu T, Ding G, Liu X, Sheng J, Meng Y, Huang H. Advanced paternal age increased metabolic risks in mice offspring. Biochim Biophys Acta Mol Basis Dis. 2022;1868(5):166355.

  41. Zhang X, Li S, Zhou Y, Su W, Ruan X, Wang B, Zheng F, Warner M, Gustafsson JA, Guan Y. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis. Proc Natl Acad Sci USA. 2017;114(12):3181–5.

    Article  CAS  Google Scholar 

  42. Li S, Wang C, Zhang X, Su W. Cytochrome P450 omega-hydroxylase 4a14 attenuates cholestatic liver fibrosis. Front Physiol. 2021;12:688259.

    Article  Google Scholar 

  43. Pang XY, Wang S, Jurczak MJ, Shulman GI, Moise AR. Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys. 2017;633:93–102.

    Article  CAS  Google Scholar 

  44. Heidenreich S, Witte N, Weber P, Goehring I, Tolkachov A, von Loeffelholz C, Docke S, Bauer M, Stockmann M, Pfeiffer AFH, Birkenfeld AL, Pietzke M, Kempa S, Muenzner M, Schupp M. Retinol saturase coordinates liver metabolism by regulating ChREBP activity. Nat Commun. 2017;8(1):384.

  45. Choi HS, Yim SH, Xu HD, Jung SH, Shin SH, Hu HJ, Jung CK, Choi JY, Chung YJ. Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma. BMC Cancer. 2010;10:122.

    Article  Google Scholar 

  46. Tian Z, Zhao J, Wang Y. The prognostic value of TPM1-4 in hepatocellular carcinoma. Cancer Med. 2022;11(2):433–46.

    Article  CAS  Google Scholar 

  47. Cheng C, Zhao H, Wang Z, Lu W, Wang L, Wang R, Yao L. The effect of 5’-adenylic acid on hepatic proteome of mice radiated by 60Co gamma-ray. Int J Mol Sci. 2013;15(1):186–202.

    Article  Google Scholar 

  48. Garcia-Suarez O, Gonzalez-Martinez T, Perez-Perez M, Germana A, Blanco-Gelaz MA, Monjil DF, Ciriaco E, Silos-Santiago I, Vega JA. Expression of the neurotrophin receptor TrkB in the mouse liver. Anat Embryol. 2006;211(5):465–73.

    Article  CAS  Google Scholar 

  49. Hang PZ, Ge FQ, Li PF, Liu J, Zhu H, Zhao J. The regulatory role of the BDNF/TrkB pathway in organ and tissue fibrosis. Histol Histopathol. 2021;36(11):1133–43.

    CAS  Google Scholar 

  50. Storozhuk M, Cherninskyi A, Maximyuk O, Isaev D, Krishtal O. Acid-sensing ion channels: focus on physiological and some pathological roles in the brain. Curr Neuropharmacol. 2021;19(9):1570–89.

    Article  CAS  Google Scholar 

  51. Al Qahtani NH, AbdulAzeez S, Almandil NB, Fahad Alhur N, Alsuwat HS, Al Taifi HA, Al-Ghamdi AA, Rabindran Jermy B, Abouelhoda M, Subhani S, Al Asoom L, Borgio JF. Whole-genome sequencing reveals exonic variation of ASIC5 gene results in recurrent pregnancy loss. Front Med. 2021;8:699672.

    Article  Google Scholar 

  52. Hu E, Chen Z, Fredrickson T, Zhu Y. Molecular cloning and characterization of profilin-3: a novel cytoskeleton-associated gene expressed in rat kidney and testes. Exp Nephrol. 2001;9(4):265–74.

    Article  CAS  Google Scholar 

  53. Huang J, Zhao X, Li X, Peng J, Yang W, Mi S. HMGCR inhibition stabilizes the glycolytic enzyme PKM2 to support the growth of renal cell carcinoma. PLoS Biol. 2021;19(4):e3001197.

  54. Johnson AC, Ware LB, Himmelfarb J, Zager RA. HMG-CoA reductase activation and urinary pellet cholesterol elevations in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(9):2108–13.

    Article  CAS  Google Scholar 

  55. Gerth J, Cohen CD, Hopfer U, Lindenmeyer MT, Sommer M, Grone HJ, Wolf G. Collagen type VIII expression in human diabetic nephropathy. Eur J Clin Invest. 2007;37(10):767–73.

    Article  CAS  Google Scholar 

  56. Stasi A, Intini A, Divella C, Franzin R, Montemurno E, Grandaliano G, Ronco C, Fiaccadori E, Pertosa GB, Gesualdo L, Castellano G. Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant. 2017;32(1):24–31.

    CAS  Google Scholar 

  57. Bertrand JA, Woodward DF, Sherwood JM, Spenlehauer A, Silvestri C, Piscitelli F, Marzo VD, Yamazaki M, Sakimura K, Inoue Y, Watanabe K, Overby DR. Deletion of the gene encoding prostamide/prostaglandin F synthase reveals an important role in regulating intraocular pressure. Prostaglandins Leukot Essent Fatty Acids. 2021;165:102235.

    Article  CAS  Google Scholar 

  58. Cassidy FC, Charalambous M. Genomic imprinting, growth and maternal-fetal interactions. J Exp Biol. 2018;221:(Pt Suppl 1):jeb164517.

  59. Xu Q, Xiang Y, Wang Q, Wang L, Brind’Amour J, Bogutz AB, Zhang Y, Zhang B, Yu G, Xia W, Du Z, Huang C, Ma J, Zheng H, Li Y, Liu C, Walker CL, Jonasch E, Lefebvre L, Wu M, Lorincz MC, Li W, Li L, Xie W. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat Genet. 2019;51(5):844–56.

    Article  CAS  Google Scholar 

  60. SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod. 2018;99(1):252–62.

    Article  Google Scholar 

  61. Millership SJ, Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci. 2019; 76(20):4009–21.

  62. Kalish JM, Jiang C, Bartolomei MS. Epigenetics and imprinting in human disease. Int J Dev Biol. 2014;58(2–4):291–8.

    Article  CAS  Google Scholar 

  63. Barberet J, Barry F, Choux C, Guilleman M, Karoui S, Simonot R, Bruno C, Fauque P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenetics. 2020;12(1):121.

Download references

Acknowledgements

We thank MDPI (https://www.mdpi.com/authors/english) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (82001632), China Postdoctoral Science Foundation (2021M690929), and the Joint Construction Project of Henan Medical Science and Technology Project (SBGJ202001002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Lei Zhang, Huanhuan Chen. Methodology: Chenchen Cui. Formal analysis and investigation: Lei Zhang, Hengtao Ge. Writing—original draft preparation: Lei Zhang. Writing—review and editing: Huanhuan Chen, Li Meng. Funding acquisition: Huanhuan Chen, Cuilian Zhang. Resources: Linlin Liang.

Corresponding authors

Correspondence to Li Meng or Cuilian Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

To review GEO accession GSE203622

Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE203622

Enter token ytoxamcmxvsptkn into the box.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 325 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, H., Cui, C. et al. Effects of oocyte vitrification on gene expression in the liver and kidney tissues of adult offspring. J Assist Reprod Genet 39, 2635–2646 (2022). https://doi.org/10.1007/s10815-022-02611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02611-z

Keywords

Navigation