Skip to main content

Advertisement

Log in

Lipid metabolism-related genes as biomarkers and therapeutic targets reveal endometrial receptivity and immune microenvironment in women with reproductive dysfunction

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

In recent years, alterations in lipid metabolism are currently considered a hallmark feature of many diseases. However, the role in women with reproductive dysfunction (WRD) remains to be fully elucidated. Here, this study aimed to explore the effect of lipid metabolism-related genes (LMRGs) on endometrial receptivity of WRD.

Methods

This study retrospectively analyzed endometrial receptivity array (ERA) in GEO database. The differential expression genes (DEGs) were obtained by limma differential analysis, and the core genes and corresponding predicted microRNA were obtained through protein–protein interaction (PPI) analysis and TargetScan database, so as to predict the chemical targets of drug therapy. Through the intersection of DEGs and LMRGs, the target gene expression profile was obtained for subsequent consensus clustering analysis and immune analysis. In addition, the immune cell infiltration was assessed by applying the ESTIMATE and MCPcounter algorithm and potential drug targets were obtained from the HERB website.

Results

1473 genes showed differential expression between the groups of WRD and fertile women, and then a large number of lipid metabolism-related pathways and immune-related pathways were enriched. Twelve core genes and corresponding predicted miR-134-3p were obtained; most importantly, we found that these 12 genes were all LMRGs. Through drug target prediction, we obtained three drugs that regulate lipid metabolism and improve blood circulation, namely lovastatin, estrogen, and quercetin. EHHADH (AUC = 0.85) and PTEN (AUC = 0.82) have the best diagnostic performance. UMAP and heatmap revealed large differences between three clusters. LMRGs revealed specific manifestations of WRD in endometrial receptivity and immune microenvironment.

Conclusions

Our study explored the expression pattern of LMRGs in endometrium of WRD, screened the corresponding biomarkers, and proposed the combination of traditional Chinese and Western medicine to improve the endometrial receptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wilcox AJ, Weinberg CR, O’Connor JF, Baird DD, Schlatterer JP, Canfield RE, et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319:189–94.

    Article  CAS  Google Scholar 

  2. Diedrich K, Fauser BC, Devroey P, Griesinger G. Evian Annual Reproduction Workshop G. The role of the endometrium and embryo in human implantation. Hum Reprod Update. 2007;13:365–77.

    Article  CAS  Google Scholar 

  3. Kasius A, Smit JG, Torrance HL, Eijkemans MJ, Mol BW, Opmeer BC, et al. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum Reprod Update. 2014;20:530–41.

    Article  Google Scholar 

  4. Strowitzki T, Germeyer A, Popovici R, von Wolff M. The human endometrium as a fertility-determining factor. Hum Reprod Update. 2006;12:617–30.

    Article  Google Scholar 

  5. Altmae S, Esteban FJ, Stavreus-Evers A, Simon C, Giudice L, Lessey BA, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2014;20:12–28.

    Article  Google Scholar 

  6. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–46.

    Article  Google Scholar 

  7. Hernandez-Vargas P, Munoz M, Dominguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update. 2020;26:264–301.

    Article  CAS  Google Scholar 

  8. Bulun SE. Aromatase and estrogen receptor alpha deficiency. Fertil Steril. 2014;101:323–9.

    Article  CAS  Google Scholar 

  9. Kang HJ, Imperato-McGinley J, Zhu YS, Rosenwaks Z. The effect of 5alpha-reductase-2 deficiency on human fertility. Fertil Steril. 2014;101:310–6.

    Article  CAS  Google Scholar 

  10. Rosenwaks Z, Adashi EY. Introduction. Fertility in the face of genetically determined steroidogenic dysfunction. Fertil Steril. 2014;101:299–300.

    Article  Google Scholar 

  11. DeAngelis AM, Roy-O’Reilly M, Rodriguez A. Genetic alterations affecting cholesterol metabolism and human fertility. Biol Reprod. 2014;91:117.

    Article  Google Scholar 

  12. Taminau J, Meganck S, Lazar C, Steenhoff D, Coletta A, Molter C, et al. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinformatics. 2012;13:335.

    Article  Google Scholar 

  13. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

    Article  Google Scholar 

  14. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48:D498–503.

    CAS  PubMed  Google Scholar 

  15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  Google Scholar 

  16. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  17. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  Google Scholar 

  18. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  Google Scholar 

  19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  Google Scholar 

  20. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.

    Article  CAS  Google Scholar 

  21. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26:1572–3.

    Article  CAS  Google Scholar 

  22. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975.

    Article  CAS  Google Scholar 

  23. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  Google Scholar 

  24. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218.

    Article  Google Scholar 

  25. Horvath S, Dong J. Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol. 2008;4:e1000117.

    Article  Google Scholar 

  26. Karizbodagh MP, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. Implantation window and angiogenesis. J Cell Biochem. 2017;118:4141–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SZ: conceptualization.

YL: data curation, methodology, investigation, writing—review and editing.

YY, HS: methodology, validation.

JZ, HL: data curation, investigation.

SW, TZ, MM: data curation, investigation.

Corresponding author

Correspondence to Shu Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yao, Y., Sun, H. et al. Lipid metabolism-related genes as biomarkers and therapeutic targets reveal endometrial receptivity and immune microenvironment in women with reproductive dysfunction. J Assist Reprod Genet 39, 2179–2190 (2022). https://doi.org/10.1007/s10815-022-02584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02584-z

Keywords

Navigation