Skip to main content
Log in

Interaction between endometrial microbiota and host gene regulation in recurrent implantation failure

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Aim

To learn about the interaction between endometrial microbiota and host gene regulation in recurrent implantation failure.

Methods

The endometrial microbiota of 111 patients (RIF, 75; CON, 36) was analyzed by using 16 s rRNA sequencing technology. Transcriptome sequencing analysis of the endometrial of 60 patients was performed by using high-throughput sequencing.

Results

We found that the structure and composition of endometrium microbiota community of RIF patients were significantly different from those in control group. The abnormality of microbial structure and composition might interfere with the implantation of embryos by affecting the immune adaptation of the endometrium and the formation of endometrial blood vessels.

Conclusions

Our research described the host-microbe interaction in RIF. The structure and composition of endometrium microbiota community of RIF patients were significantly different from those in CON group. The abnormality of microbial structure and composition might interfere with the implantation of embryos by affecting the immune adaptation of the endometrium and the formation of endometrial blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The 16 s rRNA gene sequencing for 75 endometrial microbiota samples have been deposited with the National Center for Biotechnology Information (NCBI) under reference number PRJNA732058. The transcriptome sequencing for 40 endometrium samples have been deposited with the NCBI under reference number PRJNA747622.

Abbreviations

RIF:

Recurrent implantation failure

ERA:

Endometrial receptivity array

WOI:

Window of implantation

FSH:

Follicle stimulation hormone

PICRUSt2:

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

LEfSe:

Linear discriminant analysis effect size

References

  1. Coughlan C, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online. 2014;28(1):14–38.

    Article  CAS  PubMed  Google Scholar 

  2. Simon A, Laufer N. Repeated implantation failure: clinical approach. Fertil Steril. 2012;97(5):1039–43.

    Article  PubMed  Google Scholar 

  3. Thornhill AR, et al. ESHRE PGD Consortium “Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)”. Hum Reprod. 2005;20(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  4. Bashiri A, Halper KI, Orvieto R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions. Reprod Biol Endocrinol. 2018;16(1):121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diaz-Gimeno P, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60, 60 e1–15.

  6. Diaz-Gimeno P, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99(2):508–17.

    Article  PubMed  Google Scholar 

  7. Tan J, et al. The role of the endometrial receptivity array (ERA) in patients who have failed euploid embryo transfers. J Assist Reprod Genet. 2018;35(4):683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans J, et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol. 2016;12(11):654–67.

    Article  CAS  PubMed  Google Scholar 

  9. Benner M, et al. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update. 2018;24(4):393–415.

    Article  CAS  PubMed  Google Scholar 

  10. Koedooder R, et al. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update. 2019;25(3):298–325.

    Article  PubMed  Google Scholar 

  11. Moreno I, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;215(6):684–703.

    Article  PubMed  Google Scholar 

  12. Molina NM, et al. New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future? Biomolecules. 2020;10(4):593.

    Article  CAS  PubMed Central  Google Scholar 

  13. Chen C, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017;8(1):875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. O’Callaghan JL, et al. Re-assessing microbiomes in the low-biomass reproductive niche. BJOG. 2020;127(2):147–58.

    Article  PubMed  Google Scholar 

  15. Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rognes T, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4: e2584.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang Q, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hill TC, et al. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol. 2003;43(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  19. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One. 2013;8(4): e61217.

  20. Chong J, et al. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020;15(3):799–821.

    Article  CAS  PubMed  Google Scholar 

  21. Dhariwal A, et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45(W1):W180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Segata N, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parks DH, et al. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9): e1002687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Watts SC, et al. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics. 2019;35(6):1064–6.

    Article  CAS  PubMed  Google Scholar 

  26. Chen S, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pertea M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pertea M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yu G, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trygg J, Wold S. O2-PLS, a two-block (X–Y) latent variable regression (LVR) method with an integral OSC filter. J Chemom. 2003;17(1):53–64.

    Article  CAS  Google Scholar 

  34. Bouhaddani SE, et al. Integrating omics datasets with the OmicsPLS package. BMC Bioinformatics. 2018;19(1):371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei T, S.V. R package “corrplot”: visualization of a correlation matrix. 2021.

  37. Zhou Y, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hashimoto T, Kyono K. Does dysbiotic endometrium affect blastocyst implantation in IVF patients? J Assist Reprod Genet. 2019;36(12):2471–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Teder H, et al. TAC-seq: targeted DNA and RNA sequencing for precise biomarker molecule counting. NPJ Genom Med. 2018;3:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miao YR, et al. ImmuCellAI: A Unique Method for Comprehensive T-Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy. Adv Sci (Weinh). 2020;7(7):1902880.

    Article  CAS  Google Scholar 

  41. Molina NM, et al. Analysing endometrial microbiome: methodological considerations and recommendations for good practice. Hum Reprod. 2021;36(4):859–79.

    Article  CAS  PubMed  Google Scholar 

  42. Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29(2):95–113.

    Article  PubMed  Google Scholar 

  43. Candelli M, et al. Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci. 2021;22(12):6242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011;10(4):311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koo HS, et al. CXCL12 enhances pregnancy outcome via improvement of endometrial receptivity in mice. Sci Rep. 2021;11(1):7397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koo HS, et al. Non-invasive intrauterine administration of botulinum toxin a enhances endometrial angiogenesis and improves the rates of embryo implantation. Reprod Sci. 2021;28(6):1671–87.

  48. Corachán A, et al. Novel therapeutic targets to improve IVF outcomes in endometriosis patients: a review and future prospects. Hum Reprod Update. 2021;27(5):923–72.

  49. Verstraelen H, et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1–2 region of the 16S rRNA gene. PeerJ. 2016;4: e1602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Franasiak JM, et al. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assist Reprod Genet. 2016;33(1):129–36.

    Article  CAS  PubMed  Google Scholar 

  51. Quince C, et al. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods. 2009;6(9):639–41.

    Article  CAS  PubMed  Google Scholar 

  52. Huse SM, et al. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol. 2010;12(7):1889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quince C, et al. Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 2011;12:38.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mori H, et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 2014;21(2):217–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Natural Science Foundation of China [grant number 81871214] and National Key R&D Program of China [grant number 2017YFC1001603].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Fang or Tingting Li.

Ethics declarations

Ethics approval and consent to participate

The Ethics Committee approved the study of Sixth Affiliated Hospital of Sun Yat-Sen University (L2021ZSLYEC-280).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Table S1

Clinical features of subject. (XLSX 17 kb)

Table S2

Differences in genus of RIF patients with different clinical characteristics. (XLSX 632 kb)

Supplement material 1 (PDF 138 kb)

Figure S1

(A) The rarefaction curve of 16s rRNA data. The composition of Phylum (B) and Genus (C) of inter-individual in each group. (PNG 352 kb)

High resolution image (TIF 1731 kb)

Figure S2

The co-occurrence network of RIF group (A) and CON group (B) based on SparCC. (PNG 473 kb)

High resolution image (TIF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Jia, L., Zhou, Y. et al. Interaction between endometrial microbiota and host gene regulation in recurrent implantation failure. J Assist Reprod Genet 39, 2169–2178 (2022). https://doi.org/10.1007/s10815-022-02573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02573-2

Keywords

Navigation