Skip to main content
Log in

Are ovarian responses and the number of transferable embryos different in females and partners of male balanced translocation carriers?

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To compare ovarian response and the number of transferable embryos between women with balanced autosomal translocations and women whose partners carry the translocation (control group). To investigate the predictive value of metaphase II (MII) oocyte number and biopsied embryo number for gaining at lowest one transferable embryo.

Design

We retrospectively analyzed 1942 preimplantation genetic testing for structural rearrangements (PGT-SR) cycles of 1505 balanced autosomal translocation couples over 8 years. All cycles were divided into two subgroups: Robertsonian and reciprocal translocations (ROBT and ReBT). Receiver operator characteristic (ROC) curves were plotted to ascertain a cutoff of MII oocytes and biopsied embryos as predictors of gaining at lowest one transferable embryo.

Result

There were no statistical differences in baseline features or ovarian response indicators regarding the number of retrieved/MII oocytes, E2 level on the day of HCG, and ovarian sensitivity index (OSI) between women with balanced autosomal translocations and control group (P > 0.05). A decreased number of transferable embryos were found in women with balanced autosomal translocations regardless of the type of translocation. The cutoff values for gaining at lowest one transferable embryo are 12.5 MII oocytes and 4.5 biopsied embryos, respectively.

Conclusion

Women with balanced autosomal translocations have a normal ovarian response, but fewer transferable embryos, meaning that higher gonadotropin (Gn) doses may be required to increase transferable embryos. When fewer than 12.5 MII oocytes or 4.5 blastocysts are obtained in a PGT-SR cycle, couples should be notified that the likelihood of gaining a transferable embryo is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hamerton JL, Canning N, Ray M, Smith S. A cytogenetic survey of 14069 newborn infants. I. Incidence of chromosome abnormalities. Clin Genet. 1975;8(4):223–43. https://doi.org/10.1111/j.1399-0004.1975.tb01498.x.

    Article  CAS  PubMed  Google Scholar 

  2. Fryns JP, Van Buggenhout G. Structural chromosome rearrangements in couples with recurrent fetal wastage. Eur J Obstet Gynecol Reprod Biol. 1998;81(2):171–6. https://doi.org/10.1016/s0301-2115(98)00185-7.

    Article  CAS  PubMed  Google Scholar 

  3. Scriven PN. PGT-SR (reciprocal translocation) using trophectoderm sampling and next-generation sequencing: insights from a virtual trial. J Assist Reprod Genet. 2021;38(8):1971–8. https://doi.org/10.1007/s10815-021-02174-5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mayeur A, Ahdad N, Hesters L, Grynberg M, Romana S, Sonigo C, et al. Does the prognosis after PGT for structural rearrangement differ between female and male translocation carriers? Reprod Biomed Online. 2020;40(5):684–92. https://doi.org/10.1016/j.rbmo.2020.01.025.

    Article  CAS  PubMed  Google Scholar 

  5. Tong J, Niu Y, Wan A, Zhang T. Effect of parental origin and predictors for obtaining a euploid embryo in balanced translocation carriers. Reprod Biomed Online. 2021. https://doi.org/10.1016/j.rbmo.2021.09.007.

    Article  PubMed  Google Scholar 

  6. Chen SH, Escudero T, Cekleniak NA, Sable DB, Garrisi MG, Munne S. Patterns of ovarian response to gonadotropin stimulation in female carriers of balanced translocation. Fertil Steril. 2005;83(5):1504–9. https://doi.org/10.1016/j.fertnstert.2004.11.058.

    Article  CAS  PubMed  Google Scholar 

  7. Lledó B, Ortiz JA, Morales R, Ten J, de la Fuente PE, García-Ochoa C, et al. The paternal effect of chromosome translocation carriers observed from meiotic segregation in embryos. Hum Reprod. 2010;25(7):1843–8. https://doi.org/10.1093/humrep/deq111.

    Article  CAS  PubMed  Google Scholar 

  8. Harper JC, Wilton L, Traeger-Synodinos J, Goossens V, Moutou C, SenGupta SB, et al. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update. 2012;18(3):234–47. https://doi.org/10.1093/humupd/dmr052.

    Article  CAS  PubMed  Google Scholar 

  9. Mateu-Brull E, Rodrigo L, Peinado V, Mercader A, Campos-Galindo I, Bronet F, et al. Interchromosomal effect in carriers of translocations and inversions assessed by preimplantation genetic testing for structural rearrangements (PGT-SR). J Assist Reprod Genet. 2019;36(12):2547–55. https://doi.org/10.1007/s10815-019-01593-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tur-Kaspa I. Clinical management of in vitro fertilization with preimplantation genetic diagnosis. Semin Reprod Med. 2012;30(4):309–22. https://doi.org/10.1055/s-0032-1313910.

    Article  CAS  PubMed  Google Scholar 

  11. Huber M, Hadziosmanovic N, Berglund L, Holte J. Using the ovarian sensitivity index to define poor, normal, and high response after controlled ovarian hyperstimulation in the long gonadotropin-releasing hormone-agonist protocol: suggestions for a new principle to solve an old problem. Fertil Steril. 2013;100(5):1270–6. https://doi.org/10.1016/j.fertnstert.2013.06.049.

    Article  CAS  PubMed  Google Scholar 

  12. Li HW, Lee VC, Ho PC, Ng EH. Ovarian sensitivity index is a better measure of ovarian responsiveness to gonadotrophin stimulation than the number of oocytes during in-vitro fertilization treatment. J Assist Reprod Genet. 2014;31(2):199–203. https://doi.org/10.1007/s10815-013-0144-5.

    Article  PubMed  Google Scholar 

  13. Niu W, Wang L, Xu J, Li Y, Shi H, Li G, et al. Improved clinical outcomes of preimplantation genetic testing for aneuploidy using MALBAC-NGS compared with MDA-SNP array. BMC pregnancy childbirth. 2020;20(1):388. https://doi.org/10.1186/s12884-020-03082-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dechanet C, Castelli C, Reyftmann L, Hamamah S, Hedon B, Dechaud H, et al. Do female translocations influence the ovarian response pattern to controlled ovarian stimulation in preimplantation genetic diagnosis? Hum Reprod. 2011;26(5):1232–40. https://doi.org/10.1093/humrep/der032.

    Article  CAS  PubMed  Google Scholar 

  15. Alviggi C, Conforti A, Esteves SC, Vallone R, Venturella R, Staiano S, et al. Understanding ovarian hypo-response to exogenous gonadotropin in ovarian stimulation and its new proposed marker-the follicle-to-oocyte (FOI) index. Front Endocrinol. 2018;9:589. https://doi.org/10.3389/fendo.2018.00589.

    Article  Google Scholar 

  16. Verdoni A, Hu J, Surti U, Babcock M, Sheehan E, Clemens M, et al. Reproductive outcomes in individuals with chromosomal reciprocal translocations. Genet Med. 2021;23(9):1753–60. https://doi.org/10.1038/s41436-021-01195-w.

    Article  CAS  PubMed  Google Scholar 

  17. Ko DS, Cho JW, Lee HS, Kim JY, Kang IS, Yang KM, et al. Preimplantation genetic diagnosis outcomes and meiotic segregation analysis of robertsonian translocation carriers. Fertil Steril. 2013;99(5):1369–76. https://doi.org/10.1016/j.fertnstert.2012.12.010.

    Article  CAS  PubMed  Google Scholar 

  18. Liu H, Mao B, Xu X, Liu L, Ma X, Zhang X. The effectiveness of next-generation sequencing-based preimplantation genetic testing for balanced translocation couples. Cytogenet Genome Res. 2020;160(11–12):625–33. https://doi.org/10.1159/000512847.

    Article  CAS  PubMed  Google Scholar 

  19. Ma X, Xu X, Mao B, Liu H, Li H, Liu K, et al. Chromosomal analysis for embryos from balanced chromosomal rearrangement carriers using next generation sequencing. Mol Reprod Dev. 2021;88(5):362–70. https://doi.org/10.1002/mrd.23469.

    Article  CAS  PubMed  Google Scholar 

  20. Bint SM, Ogilvie CM, Flinter FA, Khalaf Y, Scriven PN. Meiotic segregation of Robertsonian translocations ascertained in cleavage-stage embryos–implications for preimplantation genetic diagnosis. Hum Reprod. 2011;26(6):1575–84. https://doi.org/10.1093/humrep/der080.

    Article  CAS  PubMed  Google Scholar 

  21. Song H, Shi H, Yang ET, Bu ZQ, Jin ZQ, Huo MZ, et al. Effects of gender of reciprocal chromosomal translocation on blastocyst formation and pregnancy outcome in preimplantation genetic testing. Front Endocrinol. 2021;12:704299. https://doi.org/10.3389/fendo.2021.704299.

    Article  Google Scholar 

  22. Lin L, Chen X, Wang J, Li R, Ding C, Cai B, et al. Effect of carriers’ sex on meiotic segregation patterns and chromosome stability of reciprocal translocations. Reprod Biomed Online. 2021;43(6):1011–8. https://doi.org/10.1016/j.rbmo.2021.08.017.

    Article  PubMed  Google Scholar 

  23. Zhang S, Lei C, Wu J, Sun H, Zhou J, Zhu S, et al. Analysis of segregation patterns of quadrivalent structures and the effect on genome stability during meiosis in reciprocal translocation carriers. Hum Reprod. 2018;33(4):757–67. https://doi.org/10.1093/humrep/dey036.

    Article  PubMed  Google Scholar 

  24. Mackie Ogilvie C, Scriven PN. Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos. Eur J Hum Genet. 2002;10(12):801–6. https://doi.org/10.1038/sj.ejhg.5200895.

    Article  CAS  PubMed  Google Scholar 

  25. Katagiri Y, Tamaki Y. Genetic counseling prior to assisted reproductive technology. Reprod Med Biol. 2021;20(2):133–43. https://doi.org/10.1002/rmb2.12361.

    Article  PubMed  Google Scholar 

  26. Zhang L, Wei D, Zhu Y, Jiang W, Xia M, Li J, et al. Interaction of acrocentric chromosome involved in translocation and sex of the carrier influences the proportion of alternate segregation in autosomal reciprocal translocations. Hum Reprod. 2019;34(2):380–7. https://doi.org/10.1093/humrep/dey367.

    Article  CAS  PubMed  Google Scholar 

  27. Lei C, Zhang S, Zhu S, Wu J, Xiao M, Zhou J, et al. Conventional ICSI improves the euploid embryo rate in male reciprocal translocation carriers. J Assist Reprod Genet. 2021;38(1):129–38. https://doi.org/10.1007/s10815-020-02013-z.

    Article  PubMed  Google Scholar 

  28. Wang YZ, Ding CH, Wang J, Zeng YH, Zhou W, Li R, et al. Number of blastocysts biopsied as a predictive indicator to obtain at least one normal/balanced embryo following preimplantation genetic diagnosis with single nucleotide polymorphism microarray in translocation cases. J Assist Reprod Genet. 2017;34(1):51–9. https://doi.org/10.1007/s10815-016-0831-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanjun Dai.

Ethics declarations

Ethics approval and consent to participate

The present study was consistent with the Declaration of Helsinki and received approval from the Research Ethics Board of the First Affiliated Hospital of Zhengzhou University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Bu, Z., Liu, Y. et al. Are ovarian responses and the number of transferable embryos different in females and partners of male balanced translocation carriers?. J Assist Reprod Genet 39, 2019–2026 (2022). https://doi.org/10.1007/s10815-022-02563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02563-4

Keywords

Navigation