Skip to main content

Advertisement

Log in

MIR146A and ADIPOQ genetic variants are associated with birth weight in relation to gestational age: a cohort study

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the genetic variants related to polycystic ovary syndrome (PCOS) and its metabolic complications in girls born small for gestational age (SGA).

Design

Retrospective birth cohort study.

Materials and methods

We evaluated 66 women of reproductive age born at term (37–42 weeks of gestational age) according to the birth weight in relation to gestational age: 26 SGA and 40 AGA (Adequate for gestational age). Anthropometric and biochemical characteristics were measured, as well as the PCOS prevalence. We analyzed 48 single nucleotide polymorphisms (SNPs) previously associated with PCOS and its comorbidities using TaqMan Low-Density Array (TLDA). miRNet and STRING databases were used to predict target and disease networks.

Results

Anthropometric and biochemical characteristics did not differ between the SGA and AGA groups, as well as insulin resistance and PCOS prevalence. Two SNPs were not in Hardy–Weinberg equilibrium, the rs2910164 (MIR146A C > G) and rs182052 (ADIPOQ G > A). The rs2910164 minor allele frequency (MAF) was increased in SGA (OR, 2.77; 95%; CI, 1.22—6.29), while the rs182052 was increased AGA (OR, 0.34; 95%; CI, 0.13 – 0.88). The alleles related to reduced miRNA-146a (C) and ADIPOQ (A) activity showed increased frequency in SGA. The mature miR-146a targets 319 genes, been the CXCR4, TMEM167A and IF144L common targets and contributes to PCOS. The ADIPOQ main protein interactions were ERP44, PPARGCIA and CDH13.

Conclusions

The miR-146a (rs2910164) and ADIPOQ (rs182052) allelic variants are related to birth weight in SGA and may predict health-related outcomes, such as PCOS and obesity risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alsaied T, Omar K, James JF, Hinton RB, Crombleholme TM, Habli M. Fetal origins of adult cardiac disease: a novel approach to prevent fetal growth restriction induced cardiac dysfunction using insulin like growth factor. Pediatr Res. 2017;81(6):919–25.

    Article  CAS  PubMed  Google Scholar 

  2. Xita N, Tsatsoulis A. Fetal origins of the metabolic syndrome. Ann N Y Acad Sci. 2010;1205:148–55.

    Article  PubMed  Google Scholar 

  3. Rkhzay-Jaf J, O’Dowd JF, Stocker CJ. Maternal Obesity and the Fetal Origins of the Metabolic Syndrome. Curr Cardiovasc Risk Rep. 2012;6(5):487–95.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ismail-Beigi F, Catalano PM, Hanson RW. Metabolic programming: fetal origins of obesity and metabolic syndrome in the adult. Am J Physiol Endocrinol Metab. 2006;291(3):E439–40.

    Article  CAS  PubMed  Google Scholar 

  5. Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–51.

    Article  PubMed  Google Scholar 

  7. Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370(9588):685–97.

    Article  CAS  PubMed  Google Scholar 

  8. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89(6):2745–9.

    Article  CAS  PubMed  Google Scholar 

  9. Group REA-SPCW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.

    Article  Google Scholar 

  10. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;08(2):16057.

    Article  Google Scholar 

  11. Eiras MC, Pinheiro DP, Romcy KAM, Ferriani RA, Reis RMD, Furtado CLM. Polycystic ovary syndrome: the epigenetics behind the disease. Reprod Sci. 2022;29(3):680–94.

    Article  PubMed  Google Scholar 

  12. Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland O, Laurin C, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet. 2019;51(5):804–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Engelbrechtsen L, Gybel-Brask D, Mahendran Y, Crusell M, Hansen TH, Schnurr TM, et al. Birth weight variants are associated with variable fetal intrauterine growth from 20 weeks of gestation. Sci Rep. 2018;30:8.

    Google Scholar 

  14. Melo AS, Vieira CS, Barbieri MA, Rosa ESAC, Silva AA, Cardoso VC, et al. High prevalence of polycystic ovary syndrome in women born small for gestational age. Hum Reprod. 2010;25(8):2124–31.

    Article  CAS  PubMed  Google Scholar 

  15. Giapros V, Drougia A, Krallis N, Theocharis P, Andronikou S. Morbidity and mortality patterns in small-for-gestational age infants born preterm. J Matern Fetal Neonatal Med. 2012;25(2):153–7.

    Article  PubMed  Google Scholar 

  16. Sehgal A, Doctor T, Menahem S. Cardiac function and arterial biophysical properties in small for gestational age infants: postnatal manifestations of fetal programming. J Pediatr. 2013;163(5):1296–300.

    Article  PubMed  Google Scholar 

  17. Lee H, Oh JY, Sung YA, Chung H, Kim HL, Kim GS, et al. Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome. Hum Reprod. 2015;30(3):723–31.

    Article  CAS  PubMed  Google Scholar 

  18. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5.

    Article  CAS  PubMed  Google Scholar 

  19. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43(1):55–9.

    Article  PubMed  CAS  Google Scholar 

  20. Yu YY, Sun CX, Liu YK, Li Y, Wang L, Zhang W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil Steril. 2015;104(1):145-53 e6.

    Article  CAS  PubMed  Google Scholar 

  21. Pedroso DCC, Santana VP, Donaires FS, Picinato MC, Giorgenon RC, Santana BA, et al. Telomere Length and Telomerase Activity in Immature Oocytes and Cumulus Cells of Women with Polycystic Ovary Syndrome. Reprod Sci. 2020;27(6):1293–303.

    Article  CAS  PubMed  Google Scholar 

  22. Li Q, Du J, Feng R, Xu Y, Wang H, Sang Q, et al. A possible new mechanism in the pathophysiology of polycystic ovary syndrome (PCOS): the discovery that leukocyte telomere length is strongly associated with PCOS. J Clin Endocrinol Metab. 2014;99(2):E234–40.

    Article  CAS  PubMed  Google Scholar 

  23. Lin LH, Baracat MC, Maciel GA, Soares JM Jr, Baracat EC. Androgen receptor gene polymorphism and polycystic ovary syndrome. Int J Gynaecol Obstet. 2013;120(2):115–8.

    Article  CAS  PubMed  Google Scholar 

  24. Beaumont RN, Warrington NM, Cavadino A, Tyrrell J, Nodzenski M, Horikoshi M, et al. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet. 2018;27(4):742–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538(7624):248–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ, et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet. 2013;45(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  27. Barbieri MA, Bettiol H, Silva AA, Cardoso VC, Simões VM, Gutierrez MR, et al. Health in early adulthood: the contribution of the 1978/79 Ribeirão Preto birth cohort. Braz J Med Biol Res. 2006;39(8):1041–55.

    Article  CAS  PubMed  Google Scholar 

  28. Cardoso VC, Simoes VM, Barbieri MA, Silva AA, Bettiol H, Alves MT, et al. Profile of three Brazilian birth cohort studies in Ribeirao Preto, SP and Sao Luis, MA. Braz J Med Biol Res. 2007;40(9):1165–76.

    Article  CAS  PubMed  Google Scholar 

  29. Melo AS, Vieira CS, Barbieri MA, Rosa-E-Silva AC, Silva AA, Cardoso VC, et al. High prevalence of polycystic ovary syndrome in women born small for gestational age. Hum Reprod. 2010;25(8):2124–31.

    Article  CAS  PubMed  Google Scholar 

  30. Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr. 1967;71(2):159–63.

    Article  CAS  PubMed  Google Scholar 

  31. Zawadski JK, Dunaif A. Diagnostic Criteria for Polycystic Ovary Syndrome: Towards a Rational Approach. Boston: Blackwell Scientific; 1992.

    Google Scholar 

  32. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39(Database issue):D163-9.

    Article  CAS  PubMed  Google Scholar 

  34. Kim VN, Nam JW. Genomics of microRNA. Trends Genet. 2006;22(3):165–73.

    Article  CAS  PubMed  Google Scholar 

  35. Testa U, Pelosi E, Castelli G, Labbaye C. miR-146 and miR-155: two key modulators of immune response and tumor development. Noncoding RNA. 2017;3(3):22.

    PubMed Central  Google Scholar 

  36. Garo LP, Ajay AK, Fujiwara M, Gabriely G, Raheja R, Kuhn C, et al. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nat Commun. 2021;12(1):2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mortazavi-Jahromi SS, Aslani M, Mirshafiey A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol Lett. 2020;227:8–27.

    Article  CAS  PubMed  Google Scholar 

  38. Alipoor B, Ghaedi H, Meshkani R, Torkamandi S, Saffari S, Iranpour M, et al. Association of MiR-146a Expression and Type 2 Diabetes Mellitus: A Meta-Analysis. Int J Mol Cell Med. 2017;6(3):156–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen L, Li CX, Zhang H, Qiu SH, Fu P, Xu YF. Downregulation of miR-146a Contributes to Cardiac Dysfunction Induced by the Tyrosine Kinase Inhibitor Sunitinib. Front Pharmacol. 2019;23:10.

    Google Scholar 

  40. Cirillo F, Catellani C, Lazzeroni P, Sartori C, Nicoli A, Amarri S, et al. MiRNAs Regulating Insulin Sensitivity Are Dysregulated in Polycystic Ovary Syndrome (PCOS) Ovaries and Are Associated With Markers of Inflammation and Insulin Sensitivity. Front Endocrinol (Lausanne). 2019;10:879.

    Article  Google Scholar 

  41. Ebrahimi SO, Reiisi S, Parchami BS. Increased risk of polycystic ovary syndrome (PCOS) associated with CC genotype of miR-146a gene variation. Gynecol Endocrinol. 2018;34(9):793–7.

    Article  CAS  PubMed  Google Scholar 

  42. Cho SH, Chung KW, Kim JO, Jang H, Yoo JK, Choi Y, et al. Association of miR-146aC > G, miR-149C > T, miR-196a2T > C, and miR-499A > G polymorphisms with risk of recurrent implantation failure in Korean women. Eur J Obstet Gynecol Reprod Biol. 2016;202:14–9.

    Article  CAS  PubMed  Google Scholar 

  43. Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril. 2014;101(6):1524–30.

    Article  CAS  PubMed  Google Scholar 

  44. Luly FR, Leveque M, Licursi V, Cimino G, Martin-Chouly C, Theret N, et al. MiR-146a is over-expressed and controls IL-6 production in cystic fibrosis macrophages. Sci Rep. 2019;7:9.

    Google Scholar 

  45. Roos J, Enlund E, Funcke JB, Tews D, Holzmann K, Debatin KM, et al. miR-146a-mediated suppression of the inflammatory response in human adipocytes. Sci Rep. 2016;6:6.

    Article  CAS  Google Scholar 

  46. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402.

    Article  CAS  Google Scholar 

  48. Wommack JC, Trzeciakowski JP, Miranda RC, Stowe RP, Ruiz RJ. Micro RNA clusters in maternal plasma are associated with preterm birth and infant outcomes. PLoS One. 2018;13(6):e0199029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rodosthenous RS, Burris HH, Sanders AP, Just AC, Dereix AE, Svensson K, et al. Second trimester extracellular microRNAs in maternal blood and fetal growth: An exploratory study. Epigenetics. 2017;12(9):804–10.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marzano F, Faienza MF, Caratozzolo MF, Brunetti G, Chiara M, Horner DS, et al. Pilot study on circulating miRNA signature in children with obesity born small for gestational age and appropriate for gestational age. Pediatr Obes. 2018;13(12):803–11.

    Article  CAS  PubMed  Google Scholar 

  51. Kim SH, MacIntyre DA, Binkhamis R, Cook J, Sykes L, Bennett PR, et al. Maternal plasma miRNAs as potential biomarkers for detecting risk of small-for-gestational-age births. Ebiomedicine. 2020;62:10314.

    Article  CAS  Google Scholar 

  52. Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One. 2011;6(6):e21210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ostling H, Kruse R, Helenius G, Lodefalk M. Placental expression of microRNAs in infants born small for gestational age. Placenta. 2019;81:46–53.

    Article  CAS  PubMed  Google Scholar 

  54. Sun GH, Yan J, Noltner K, Feng JN, Li HT, Sarkis DA, et al. SNPs in human miRNA genes affect biogenesis and function. RNA. 2009;15(9):1640–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105(20):7269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hosseini AH, Kohan L, Aledavood A, Rostami S. Association of miR-146a rs2910164 and miR-222 rs2858060 polymorphisms with the risk of polycystic ovary syndrome in Iranian women: A case-control study. Taiwan J Obstet Gynecol. 2017;56(5):652–6.

    Article  PubMed  Google Scholar 

  57. Jamshidi M, Mohammadi Pour S, Bahadoram M, Mahmoudian-Sani MR, Saeedi BA. Genetic polymorphisms associated with polycystic ovary syndrome among Iranian women. Int J Gynaecol Obstet. 2021;153(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  58. Dupont C, Kappeler L, Saget S, Grandjean V, Levy R. Role of miRNA in the Transmission of Metabolic Diseases Associated With Paternal Diet-Induced Obesity. Front Genet. 2019;10:337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dastani Z, Hivert MF, Timpson N, Perry JR, Yuan X, Scott RA, et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 2012;8(3):e1002607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kong KA, Suh YJ, Cho SJ, Park EA, Park MH, Kim YJ. Association of adiponectin gene polymorphism with birth weight in Korean neonates. Twin Res Hum Genet. 2013;16(3):732–8.

    Article  PubMed  Google Scholar 

  61. Henneman P, Aulchenko YS, Frants RR, Zorkoltseva IV, Zillikens MC, Frolich M, et al. Genetic Architecture of Plasma Adiponectin Overlaps With the Genetics of Metabolic Syndrome-Related Traits. Diabetes Care. 2010;33(4):908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu LF, Xu GP, Zhao Q, Wang D, Zhou LJ, Sun B, et al. The association between adiponectin gene rs182052 polymorphism and cancer risk: a meta-analysis. Biosci Rep. 2020;40(6):BSR20192410.

  63. Smetnev S, Klimushina M, Kutsenko V, Kiseleva A, Gumanova N, Kots A, et al. Associations of SNPs of the ADIPOQ gene with serum adiponectin levels, unstable angina, and coronary artery disease. Biomolecules. 2019;9(10):537.

    Article  PubMed Central  CAS  Google Scholar 

  64. Kotani Y, Yokota I, Kitamura S, Matsuda J, Naito E, Kuroda Y. Plasma adiponectin levels in newborns are higher than those in adults and positively correlated with birth weight. Clin Endocrinol (Oxf). 2004;61(4):418–23.

    Article  CAS  Google Scholar 

  65. Tsai PJ, Yu CH, Hsu SP, Lee YH, Chiou CH, Hsu YW, et al. Cord plasma concentrations of adiponectin and leptin in healthy term neonates: positive correlation with birthweight and neonatal adiposity. Clin Endocrinol (Oxf). 2004;61(1):88–93.

    Article  CAS  Google Scholar 

  66. Saito M, Kamoda T, Nishimura K, Miyazono Y, Kanai Y, Kato Y, et al. Association of adiponectin polymorphism with cord blood adiponectin concentrations and intrauterine growth. J Hum Genet. 2012;57(2):109–14.

    Article  CAS  PubMed  Google Scholar 

  67. Jaquet D, Deghmoun S, Chevenne D, Czernichow P, Levy-Marchal C. Low serum adiponectin levels in subjects born small for gestational age: impact on insulin sensitivity. Int J Obes (Lond). 2006;30(1):83–7.

    Article  CAS  Google Scholar 

  68. Ibanez L, Ong K, Dunger DB, de Zegher F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab. 2006;91(6):2153–8.

    Article  CAS  PubMed  Google Scholar 

  69. Ibanez L, Potau N, Carrascosa A. Insulin resistance, premature adrenarche, and a risk of the Polycystic Ovary Syndrome (PCOS). Trends Endocrinol Metab. 1998;9(2):72–7.

    Article  CAS  PubMed  Google Scholar 

  70. Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the subjects and their families for participating in this study. We also thank the members of the Human Reproduction Division at Department of Gynecology and Obstetrics of the Ribeirao Preto Medical School, University of Sao Paulo, especially Cristiana Carolina Padovan for the assistance in DNA quantification, Océlia de Vasconcelos for blood collection and Maria Albina Valladas Verceze and Tatiana Marina Vieira Giorgenon for measuring hormone concentrations.

Funding

This study was supported by the Sao Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP) with the grant 2015/26152–7 (RAF), National Council for Scientific and Technological Development (CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico), Coordination for the Improvement of Higher Education Personnel (CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Academic Excellence Program—PROEX and Graduate Support Program—PROAP) and the National Institutes of Science and Technology (INCT, Institutos Nacionais de Ciência e Tecnologia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Libardi Miranda Furtado.

Ethics declarations

Conflict of interest

We have no conflict of interest in this study.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.R., Melo, A.S., Salomão, K.B. et al. MIR146A and ADIPOQ genetic variants are associated with birth weight in relation to gestational age: a cohort study. J Assist Reprod Genet 39, 1873–1886 (2022). https://doi.org/10.1007/s10815-022-02532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02532-x

Keywords

Navigation