Abstract
Purpose
The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development.
Methods
Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations.
Results
Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types.
Conclusions
Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
This is a preview of subscription content, access via your institution.





Data availability
The data presented in this article will be shared on request to the corresponding author.
Code availability
The code scripts used in this article will be shared on request to the corresponding author.
References
Quesada-Candela C, Loose J, Ghazi A, Yanowitz JL. Molecular basis of reproductive senescence: insights from model organisms. J Assist Reprod Genet. 2021;38:17–32. https://doi.org/10.1007/s10815-020-01959-4.
Gu L, et al. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci. 2015;72:251–71. https://doi.org/10.1007/s00018-014-1739-4.
Lin YJ, et al. Detrimental effect of maternal and post-weaning high-fat diet on the reproductive function in the adult female offspring rat: roles of insulin-like growth factor 2 and the ovarian circadian clock. J Assist Reprod Genet. 2017;34:817–26. https://doi.org/10.1007/s10815-017-0915-5.
Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol. 2009;587:905–15. https://doi.org/10.1113/jphysiol.2008.163477.
Gaskins AJ, et al. Dietary folate and reproductive success among women undergoing assisted reproduction. Obstet Gynecol. 2014;124:801–9. https://doi.org/10.1097/AOG.0000000000000477.
Chavarro JE, Schlaff WD. Introduction: impact of nutrition on reproduction: an overview. Fertil Steril. 2018;110:557–9. https://doi.org/10.1016/j.fertnstert.2018.07.023.
Gaskins AJ, et al. Substantial weight gain in adulthood is associated with lower probability of live birth following assisted reproduction. J Nutr. 2021;151:649–56. https://doi.org/10.1093/jn/nxaa371.
Pagliardini L, et al. High prevalence of vitamin D deficiency in infertile women referring for assisted reproduction. Nutrients. 2015;7:9972–84. https://doi.org/10.3390/nu7125516.
Chiu YH, et al. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum Reprod. 2018;33:156–65. https://doi.org/10.1093/humrep/dex335.
Clagett-Dame M, Knutson D. Vitamin A in reproduction and development. Nutrients. 2011;3:385–428. https://doi.org/10.3390/nu3040385.
Freeman HJ. Reproductive changes associated with celiac disease. World J Gastroenterol. 2010;16:5810–4. https://doi.org/10.3748/wjg.v16.i46.5810.
Graham TW. Trace element deficiencies in cattle. Vet Clin North Am Food Anim Pract. 1991;7:153–215. https://doi.org/10.1016/s0749-0720(15)30816-1.
Lopez-Botella A, et al. Impact of heavy metals on human male fertility—an overview. Antioxidants (Basel). 2021;10:1473. https://doi.org/10.3390/antiox10091473.
Bloom MS, et al. Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes. J Assist Reprod Genet. 2012;29:1369–79. https://doi.org/10.1007/s10815-012-9882-z.
Aitken RJ, et al. Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum Reprod. 2014;29:2136–47. https://doi.org/10.1093/humrep/deu204.
Roussou P, Tsagarakis NJ, Kountouras D, Livadas S, Diamanti-Kandarakis E. Beta-thalassemia major and female fertility: the role of iron and iron-induced oxidative stress. Anemia. 2013;2013:617204. https://doi.org/10.1155/2013/617204.
Souza TL, et al. Multigenerational analysis of the functional status of male reproductive system in mice after exposure to realistic doses of manganese. Food Chem Toxicol. 2019;133:110763. https://doi.org/10.1016/j.fct.2019.110763.
Christian P. Micronutrients and reproductive health issues: an international perspective. J Nutr. 2003;133:1969S–73S. https://doi.org/10.1093/jn/133.6.1969S.
Sommer AL, Lipman CB. Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiol. 1926;1:231–49. https://doi.org/10.1104/pp.1.3.231.
Prasad AS, Miale A Jr, Farid Z, Sandstead HH, Schulert AR. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J Lab Clin Med. 1963;61:537–49.
Nasiadek M, Stragierowicz J, Klimczak M, Kilanowicz A. The role of zinc in selected female reproductive system disorders. Nutrients. 2020;12:2464. https://doi.org/10.3390/nu12082464.
Apgar J. Zinc and reproduction. Annu Rev Nutr. 1985;5:43–68. https://doi.org/10.1146/annurev.nu.05.070185.000355.
Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: an integrative review. J Res Med Sci. 2013;18:144–57.
Cox EH, McLendon GL. Zinc-dependent protein folding. Curr Opin Chem Biol. 2000;4:162–5. https://doi.org/10.1016/s1367-5931(99)00070-8.
Kochanczyk T, et al. Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Sci Rep. 2016;6:36346. https://doi.org/10.1038/srep36346.
Li W, Zhang J, Wang J, Wang W. Metal-coupled folding of Cys2His2 zinc-finger. J Am Chem Soc. 2008;130:892–900. https://doi.org/10.1021/ja075302g.
Lee YM, Lim C. Physical basis of structural and catalytic Zn-binding sites in proteins. J Mol Biol. 2008;379:545–53. https://doi.org/10.1016/j.jmb.2008.04.004.
Pace NJ, Weerapana E. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules. 2014;4:419–34. https://doi.org/10.3390/biom4020419.
King JC, et al. Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. 2016. https://doi.org/10.3945/jn.115.220079.
Lu M, Fu D. Structure of the zinc transporter YiiP. Science. 2007;317:1746–8. https://doi.org/10.1126/science.1143748.
Eide DJ. Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta. 2006;1763:711–22. https://doi.org/10.1016/j.bbamcr.2006.03.005.
Zhang T, et al. Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway. Sci Adv. 2017;3:e1700344. https://doi.org/10.1126/sciadv.1700344.
Calmettes C, et al. The molecular mechanism of zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat Commun. 2015;6:7996. https://doi.org/10.1038/ncomms8996.
Kim JK, et al. Elucidating the role of metal ions in carbonic anhydrase catalysis. Nat Commun. 2020;11:4557. https://doi.org/10.1038/s41467-020-18425-5.
Theorell H, Mc KJ. Mechanism of action of liver alcohol dehydrogenase. Nature. 1961;192:47–50. https://doi.org/10.1038/192047a0.
Kim B, Lee WW. Regulatory role of zinc in immune cell signaling. Mol Cell. 2021;44:335–41. https://doi.org/10.14348/molcells.2021.0061.
Murakami M, Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008;99:1515–22. https://doi.org/10.1111/j.1349-7006.2008.00854.x.
Beyersmann D, Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14:331–41. https://doi.org/10.1023/a:1012905406548.
Outten CE, O’Halloran TV. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science. 2001;292:2488–92. https://doi.org/10.1126/science.1060331.
Gilston BA, et al. Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol. 2014;12:e1001987. https://doi.org/10.1371/journal.pbio.1001987.
Andreini C, Banci L, Bertini I, Rosato A. Counting the zinc-proteins encoded in the human genome. J Proteome Res. 2006;5:196–201. https://doi.org/10.1021/pr050361j.
Passerini A, Andreini C, Menchetti S, Rosato A, Frasconi P. Predicting zinc binding at the proteome level. BMC Bioinform. 2007;8:39. https://doi.org/10.1186/1471-2105-8-39.
Maret W. Zinc and the zinc proteome. Met Ions Life Sci. 2013;12:479–501. https://doi.org/10.1007/978-94-007-5561-1_14.
Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017;18:2222. https://doi.org/10.3390/ijms18102222.
Emdin SO, Dodson GG, Cutfield JM, Cutfield SM. Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia. 1980;19:174–82. https://doi.org/10.1007/BF00275265.
Cruz KJC, et al. Zinc and insulin resistance: biochemical and molecular aspects. Biol Trace Elem Res. 2018;186:407–12. https://doi.org/10.1007/s12011-018-1308-z.
Fallah A, Mohammad-Hasani A, Colagar AH. Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertilization. J Reprod Infertil. 2018;19:69–81.
Grieger JA, et al. Maternal selenium, copper and zinc concentrations in early pregnancy, and the association with fertility. Nutrients. 2019;11:1609. https://doi.org/10.3390/nu11071609.
Williams RB, Mills CF. The experimental production of zinc deficiency in the rat. Br J Nutr. 1970;24:989–1003. https://doi.org/10.1079/bjn19700102.
Kim AM, Vogt S, O’Halloran TV, Woodruff TK. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol. 2010;6:674–81. https://doi.org/10.1038/nchembio.419.
Kim AM, et al. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol. 2011;6:716–23. https://doi.org/10.1021/cb200084y.
Que EL, et al. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat Chem. 2015;7:130–9. https://doi.org/10.1038/nchem.2133.
Kong BY, et al. Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol Hum Reprod. 2014;20:1077–89. https://doi.org/10.1093/molehr/gau066.
Bai X, Moraes TF, Reithmeier RAF. Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol. 2017;34:1–32. https://doi.org/10.1080/09687688.2018.1448123.
Colas C, Ung PM, Schlessinger A. SLC transporters: structure, function, and drug discovery. Medchemcomm. 2016;7:1069–81. https://doi.org/10.1039/C6MD00005C.
Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Asp Med. 2013;34:612–9. https://doi.org/10.1016/j.mam.2012.05.011.
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95:749–84. https://doi.org/10.1152/physrev.00035.2014.
Hara T, et al. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci. 2017;67:283–301. https://doi.org/10.1007/s12576-017-0521-4.
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem. 2021;296:100320. https://doi.org/10.1016/j.jbc.2021.100320.
Shusterman E, et al. ZnT-1 extrudes zinc from mammalian cells functioning as a Zn(2+)/H(+) exchanger. Metallomics. 2014;6:1656–63. https://doi.org/10.1039/c4mt00108g.
Ohana E, et al. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem. 2009;284:17677–86. https://doi.org/10.1074/jbc.M109.007203.
Chao Y, Fu D. Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem. 2004;279:17173–80. https://doi.org/10.1074/jbc.M400208200.
Lin W, Chai J, Love J, Fu D. Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB. J Biol Chem. 2010;285:39013–20. https://doi.org/10.1074/jbc.M110.180620.
Girijashanker K, et al. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol. 2008;73:1413–23. https://doi.org/10.1124/mol.107.043588.
Gaither LA, Eide DJ. Functional expression of the human hZIP2 zinc transporter. J Biol Chem. 2000;275:5560–4. https://doi.org/10.1074/jbc.275.8.5560.
Zhang T, Sui D, Hu J. Structural insights of ZIP4 extracellular domain critical for optimal zinc transport. Nat Commun. 2016;7:11979. https://doi.org/10.1038/ncomms11979.
Gilkey JC, Jaffe LF, Ridgway EB, Reynolds GT. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978;76:448–66. https://doi.org/10.1083/jcb.76.2.448.
Tokmakov AA, Stefanov VE, Iwasaki T, Sato K, Fukami Y. Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci. 2014;15:18659–76. https://doi.org/10.3390/ijms151018659.
Takayama J, Fujita M, Onami S. In vivo live imaging of calcium waves and other cellular processes during fertilization in Caenorhabditis elegans. Bio Protoc. 2017;7:e2205. https://doi.org/10.21769/BioProtoc.2205.
Kury S, et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet. 2002;31:239–40. https://doi.org/10.1038/ng913.
Ziliotto S, et al. Activated zinc transporter ZIP7 as an indicator of anti-hormone resistance in breast cancer. Metallomics. 2019;11:1579–92. https://doi.org/10.1039/c9mt00136k.
Taylor KM, et al. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology. 2008;149:4912–20. https://doi.org/10.1210/en.2008-0351.
H. Diabetes Genetics Initiative of Broad Institute of et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6. https://doi.org/10.1126/science.1142358.
Boesgaard TW, et al. The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients—the EUGENE2 study. Diabetologia. 2008;51:816–20. https://doi.org/10.1007/s00125-008-0955-6.
Lazarczyk M, et al. Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. J Exp Med. 2008;205:35–42. https://doi.org/10.1084/jem.20071311.
Zou J, Milon BC, Desouki MM, Costello LC, Franklin RB. hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1). Prostate. 2011;71:1518–24. https://doi.org/10.1002/pros.21368.
Kim JH, et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell. 2014;156:730–43. https://doi.org/10.1016/j.cell.2014.01.007.
Giunta C, et al. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome—an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet. 2008;82:1290–305. https://doi.org/10.1016/j.ajhg.2008.05.001.
Andrews GK, Wang H, Dey SK, Palmiter RD. Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis. 2004;40:74–81. https://doi.org/10.1002/gene.20067.
Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK. Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis. 2006;44:239–51. https://doi.org/10.1002/dvg.20211.
Kambe T, Geiser J, Lahner B, Salt DE, Andrews GK. Slc39a1 to 3 (subfamily II) zip genes in mice have unique cell-specific functions during adaptation to zinc deficiency. Am J Phys Regul Integr Comp Phys. 2008;294:R1474–81. https://doi.org/10.1152/ajpregu.00130.2008.
Galvez-Peralta M, et al. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. PLoS One. 2012;7:e36055. https://doi.org/10.1371/journal.pone.0036055.
Dufner-Beattie J, et al. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet. 2007;16:1391–9. https://doi.org/10.1093/hmg/ddm088.
Itsumura N, et al. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. PLoS One. 2013;8:e64045. https://doi.org/10.1371/journal.pone.0064045.
Huang L, Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet. 1997;17:292–7. https://doi.org/10.1038/ng1197-292.
Menezo Y, et al. Zinc concentrations in serum and follicular fluid during ovarian stimulation and expression of Zn2+ transporters in human oocytes and cumulus cells. Reprod BioMed Online. 2011;22:647–52. https://doi.org/10.1016/j.rbmo.2011.03.015.
Hester J, Hanna-Rose W, Diaz F. Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression. Comp Biochem Physiol C Toxicol Pharmacol. 2017;191:203–9. https://doi.org/10.1016/j.cbpc.2016.09.006.
Mendoza AD, Woodruff TK, Wignall SM, O’Halloran TV. Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol. 2017;191:194–202. https://doi.org/10.1016/j.cbpc.2016.09.007.
Mendoza AD, Sue A, Antipova O, Vogt S, Woodruff TK, Wignall SM, O'Halloran TV. Dynamic zinc fluxes regulate meiotic progression in C. elegans oocytes. Biol Reprod. 2022. https://doi.org/10.1093/biolre/ioac064.
Liu Z, Chen L, Shang Y, Huang P, Miao L. The micronutrient element zinc modulates sperm activation through the SPE-8 pathway in Caenorhabditis elegans. Development. 2013;140:2103–7. https://doi.org/10.1242/dev.091025.
Zhao Y, et al. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes. PLoS Biol. 2018;16:e2005069. https://doi.org/10.1371/journal.pbio.2005069.
Tan CH, Kornfeld K. Zinc is an intracellular signal during sperm activation in Caenorhabditis elegans. Development. 2021;148:dev199836. https://doi.org/10.1242/dev.199836.
Corsi AK, Wightman B, Chalfie M. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics. 2015;200:387–407. https://doi.org/10.1534/genetics.115.176099.
Lints R, Halls DH. Reproductive system, overview. WormAtlas. 2009. https://doi.org/10.3908/wormatlas.1.21.
Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56:110–56. https://doi.org/10.1016/0012-1606(77)90158-0.
Kimble J, Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979;70:396–417. https://doi.org/10.1016/0012-1606(79)90035-6.
C. e. S. Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282:2012–8. https://doi.org/10.1126/science.282.5396.2012.
Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics. 2018;210:445–61. https://doi.org/10.1534/genetics.118.301307.
Paix A, Folkmann A, Rasoloson D, Seydoux G. High efficiency, homology-directed genome editing in caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics. 2015;201:47–54. https://doi.org/10.1534/genetics.115.179382.
Friedland AE, et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods. 2013;10:741–3. https://doi.org/10.1038/nmeth.2532.
Kim H, et al. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics. 2014;197:1069–80. https://doi.org/10.1534/genetics.114.166389.
Roh HC, Collier S, Guthrie J, Robertson JD, Kornfeld K. Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab. 2012;15:88–99. https://doi.org/10.1016/j.cmet.2011.12.003.
Roh HC, et al. ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis. PLoS Genet. 2013;9:e1003522. https://doi.org/10.1371/journal.pgen.1003522.
Roh HC, et al. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Res. 2015;43:803–16. https://doi.org/10.1093/nar/gku1360.
Dietrich N, Schneider DL, Kornfeld K. A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res. 2017;45:11658–72. https://doi.org/10.1093/nar/gkx762.
Bruinsma JJ, Jirakulaporn T, Muslin AJ, Kornfeld K. Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell. 2002;2:567–78. https://doi.org/10.1016/s1534-5807(02)00151-x.
Yoder JH, Chong H, Guan KL, Han M. Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J. 2004;23:111–9. https://doi.org/10.1038/sj.emboj.7600025.
Earley BJ, Mendoza AD, Tan CH, Kornfeld K. Zinc homeostasis and signaling in the roundworm C. elegans. Biochim Biophys Acta Mol Cell Res. 2021;1868:118882. https://doi.org/10.1016/j.bbamcr.2020.118882.
Davis DE, et al. The cation diffusion facilitator gene cdf-2 mediates zinc metabolism in Caenorhabditis elegans. Genetics. 2009;182:1015–33. https://doi.org/10.1534/genetics.109.103614.
Chapman EM, et al. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun. 2019;10:1791. https://doi.org/10.1038/s41467-019-09829-z.
Stiernagle T. Maintenance of C. elegans. WormBook. 2006;1-11. https://doi.org/10.1895/wormbook.1.101.1.
Hsu PD, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827–32. https://doi.org/10.1038/nbt.2647.
Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–5. https://doi.org/10.1093/nar/gky354.
Arribere JA, et al. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics. 2014;198:837–46. https://doi.org/10.1534/genetics.114.169730.
Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34:339–44. https://doi.org/10.1038/nbt.3481.
Muschiol D, Schroeder F, Traunspurger W. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecol. 2009;9:14. https://doi.org/10.1186/1472-6785-9-14.
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. https://doi.org/10.1038/nmeth.2019.
Wolff ID, Divekar NS, Wignall SM. Methods for investigating cell division mechanisms in C. elegans. Methods Mol Biol. 2022;2415:19–35. https://doi.org/10.1007/978-1-0716-1904-9_2.
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Version 4.4.1. 2021. https://www.R-project.org/.
RStudio Team. RStudio: Integrated development for R. Boston, MA: RStudio, PBC. Version 1.4.1717. 2021. https://www.rstudio.com.
Fox J, Weisberg S. An {R} companion to applied regression. 3rd Ed. Thousand Oaks, CA: Sage 2019.
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org
Kassambara A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0. 2020. https://CRAN.R-project.org/package=ggpubr.
Robinson D, Hayes A, Couch S. broom: convert statistical objects into tidy tibbles. R package version 0.7.9. 2021. https://CRAN.R-project.org/package=broom.
Wickham H, François R, Henry L, Müller K. dplyr: a grammar of data manipulation. Version 1.0.7. 2021. https://CRAN.R-project.org/package=dplyr.
Wickham H, Bryan J. readxl: read excel files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl.
Taylor KM, et al. Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration. Biochem J. 2016;473:2531–44. https://doi.org/10.1042/BCJ20160388.
Reinke V, Gil IS, Ward S, Kazmer K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development. 2004;131:311–23. https://doi.org/10.1242/dev.00914.
Ortiz MA, Noble D, Sorokin EP, Kimble J. A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans. G3 (Bethesda). 2014;4:1765–72. https://doi.org/10.1534/g3.114.012351.
Stoeckius M, et al. Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. EMBO J. 2014;33:1751–66. https://doi.org/10.15252/embj.201488769.
Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta. 2003;1611:16–30. https://doi.org/10.1016/s0005-2736(03)00048-8.
Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett. 2005;579:427–32. https://doi.org/10.1016/j.febslet.2004.12.006.
Bin BH, et al. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem. 2011;286:40255–65. https://doi.org/10.1074/jbc.M111.256784.
Seeler JF, et al. Metal ion fluxes controlling amphibian fertilization. Nat Chem. 2021;13:683–91. https://doi.org/10.1038/s41557-021-00705-2.
Tian X, Diaz FJ. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol. 2013;376:51–61. https://doi.org/10.1016/j.ydbio.2013.01.015.
Hu Q, et al. Zinc dynamics during drosophila oocyte maturation and egg activation. iScience. 2020;23:101275. https://doi.org/10.1016/j.isci.2020.101275.
Beaver LM, et al. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. J Nutr Biochem. 2017;43:78–87. https://doi.org/10.1016/j.jnutbio.2017.02.006.
Croxford TP, McCormick NH, Kelleher SL. Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. J Nutr. 2011;141:359–65. https://doi.org/10.3945/jn.110.131318.
Eisenmann DM, Kim SK. Protruding vulva mutants identify novel loci and Wnt signaling factors that function during Caenorhabditis elegans vulva development. Genetics. 2000;156:1097–116. https://doi.org/10.1093/genetics/156.3.1097.
Hurd DD, Kemphues KJ. PAR-1 is required for morphogenesis of the Caenorhabditis elegans vulva. Dev Biol. 2003;253:54–65. https://doi.org/10.1006/dbio.2002.0866.
Seydoux G, Schedl T, Greenwald I. Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans. Cell. 1990;61:939–51. https://doi.org/10.1016/0092-8674(90)90060-r.
McCarter J, Bartlett B, Dang T, Schedl T. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol. 1997;181:121–43. https://doi.org/10.1006/dbio.1996.8429.
Killian DJ, Hubbard EJ. Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line. Dev Biol. 2005;279:322–35. https://doi.org/10.1016/j.ydbio.2004.12.021.
Korta DZ, Hubbard EJ. Soma-germline interactions that influence germline proliferation in Caenorhabditis elegans. Dev Dyn. 2010;239:1449–59. https://doi.org/10.1002/dvdy.22268.
Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100:64–119. https://doi.org/10.1016/0012-1606(83)90201-4.
Schindler AJ, Sherwood DR. Morphogenesis of the caenorhabditis elegans vulva. Wiley Interdiscip Rev Dev Biol. 2013;2:75–95. https://doi.org/10.1002/wdev.87.
Hwang BJ, Sternberg PW. A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. Development. 2004;131:143–51. https://doi.org/10.1242/dev.00924.
Que EL, et al. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy. Integr Biol (Camb). 2017;9:135–44. https://doi.org/10.1039/c6ib00212a.
Lee S, et al. Redundant roles of four ZIP family members in zinc homeostasis and seed development in Arabidopsis thaliana. Plant J. 2021. https://doi.org/10.1111/tpj.15506.
Merritt C, Rasoloson D, Ko D, Seydoux G. 3’ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol. 2008;18:1476–82. https://doi.org/10.1016/j.cub.2008.08.013.
Haenni S, et al. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3’-end-seq. Nucleic Acids Res. 2012;40:6304–18. https://doi.org/10.1093/nar/gks282.
Garwin SA, et al. Interrogating intracellular zinc chemistry with a long stokes shift zinc probe ZincBY-4. J Am Chem Soc. 2019;141:16696–705. https://doi.org/10.1021/jacs.9b06442.
Acknowledgements
The authors would like to thank Dr. Mendoza for many helpful discussions regarding C. elegans zinc transporter biology, R. Brielmann and the Morimoto lab for instruction and use of their microinjection setup, and Dr. Zhang, Dr. Crombie, and the Andersen lab for assistance and use of their worm plate imaging setup. Microscopy was performed at the Biological Imaging Facility at Northwestern University (RRID:SCR_017767), graciously supported by the Chemistry for Life Processes Institute, the NU Office for Research, and the Department of Molecular Biosciences. Dr. Hornick and Dr. Antonova were helpful in resolving microscopy issues and recommending imaging parameters.
Funding
Research in this study was supported by National Institute of Health grants R01GM115848 (TKW and TVO), U54CA193419 (TVO), R01GM038784 (TVO), and R01GM124354 (SMW).
Author information
Authors and Affiliations
Contributions
All authors designed the research and experiments. ACS performed the experiments and all authors contributed to data analysis and interpretation. ACS drafted the initial manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sue, A.C., Wignall, S.M., Woodruff, T.K. et al. Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 39, 1261–1276 (2022). https://doi.org/10.1007/s10815-022-02495-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10815-022-02495-z
Keywords
- Zinc transporter
- Caenorhabditis elegans
- Germline development
- Fecundity
- Germline gene expression