Skip to main content

Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity

Abstract

Purpose

The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development.

Methods

Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations.

Results

Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types.

Conclusions

Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data presented in this article will be shared on request to the corresponding author.

Code availability

The code scripts used in this article will be shared on request to the corresponding author.

References

  1. Quesada-Candela C, Loose J, Ghazi A, Yanowitz JL. Molecular basis of reproductive senescence: insights from model organisms. J Assist Reprod Genet. 2021;38:17–32. https://doi.org/10.1007/s10815-020-01959-4.

    Article  PubMed  Google Scholar 

  2. Gu L, et al. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci. 2015;72:251–71. https://doi.org/10.1007/s00018-014-1739-4.

    Article  CAS  PubMed  Google Scholar 

  3. Lin YJ, et al. Detrimental effect of maternal and post-weaning high-fat diet on the reproductive function in the adult female offspring rat: roles of insulin-like growth factor 2 and the ovarian circadian clock. J Assist Reprod Genet. 2017;34:817–26. https://doi.org/10.1007/s10815-017-0915-5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol. 2009;587:905–15. https://doi.org/10.1113/jphysiol.2008.163477.

    Article  CAS  PubMed  Google Scholar 

  5. Gaskins AJ, et al. Dietary folate and reproductive success among women undergoing assisted reproduction. Obstet Gynecol. 2014;124:801–9. https://doi.org/10.1097/AOG.0000000000000477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chavarro JE, Schlaff WD. Introduction: impact of nutrition on reproduction: an overview. Fertil Steril. 2018;110:557–9. https://doi.org/10.1016/j.fertnstert.2018.07.023.

    Article  PubMed  Google Scholar 

  7. Gaskins AJ, et al. Substantial weight gain in adulthood is associated with lower probability of live birth following assisted reproduction. J Nutr. 2021;151:649–56. https://doi.org/10.1093/jn/nxaa371.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pagliardini L, et al. High prevalence of vitamin D deficiency in infertile women referring for assisted reproduction. Nutrients. 2015;7:9972–84. https://doi.org/10.3390/nu7125516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chiu YH, et al. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum Reprod. 2018;33:156–65. https://doi.org/10.1093/humrep/dex335.

    Article  CAS  PubMed  Google Scholar 

  10. Clagett-Dame M, Knutson D. Vitamin A in reproduction and development. Nutrients. 2011;3:385–428. https://doi.org/10.3390/nu3040385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Freeman HJ. Reproductive changes associated with celiac disease. World J Gastroenterol. 2010;16:5810–4. https://doi.org/10.3748/wjg.v16.i46.5810.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Graham TW. Trace element deficiencies in cattle. Vet Clin North Am Food Anim Pract. 1991;7:153–215. https://doi.org/10.1016/s0749-0720(15)30816-1.

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Botella A, et al. Impact of heavy metals on human male fertility—an overview. Antioxidants (Basel). 2021;10:1473. https://doi.org/10.3390/antiox10091473.

    Article  CAS  Google Scholar 

  14. Bloom MS, et al. Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes. J Assist Reprod Genet. 2012;29:1369–79. https://doi.org/10.1007/s10815-012-9882-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aitken RJ, et al. Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum Reprod. 2014;29:2136–47. https://doi.org/10.1093/humrep/deu204.

    Article  CAS  PubMed  Google Scholar 

  16. Roussou P, Tsagarakis NJ, Kountouras D, Livadas S, Diamanti-Kandarakis E. Beta-thalassemia major and female fertility: the role of iron and iron-induced oxidative stress. Anemia. 2013;2013:617204. https://doi.org/10.1155/2013/617204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Souza TL, et al. Multigenerational analysis of the functional status of male reproductive system in mice after exposure to realistic doses of manganese. Food Chem Toxicol. 2019;133:110763. https://doi.org/10.1016/j.fct.2019.110763.

    Article  CAS  PubMed  Google Scholar 

  18. Christian P. Micronutrients and reproductive health issues: an international perspective. J Nutr. 2003;133:1969S–73S. https://doi.org/10.1093/jn/133.6.1969S.

    Article  PubMed  Google Scholar 

  19. Sommer AL, Lipman CB. Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiol. 1926;1:231–49. https://doi.org/10.1104/pp.1.3.231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prasad AS, Miale A Jr, Farid Z, Sandstead HH, Schulert AR. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J Lab Clin Med. 1963;61:537–49.

    CAS  PubMed  Google Scholar 

  21. Nasiadek M, Stragierowicz J, Klimczak M, Kilanowicz A. The role of zinc in selected female reproductive system disorders. Nutrients. 2020;12:2464. https://doi.org/10.3390/nu12082464.

    Article  CAS  PubMed Central  Google Scholar 

  22. Apgar J. Zinc and reproduction. Annu Rev Nutr. 1985;5:43–68. https://doi.org/10.1146/annurev.nu.05.070185.000355.

    Article  CAS  PubMed  Google Scholar 

  23. Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: an integrative review. J Res Med Sci. 2013;18:144–57.

    PubMed  PubMed Central  Google Scholar 

  24. Cox EH, McLendon GL. Zinc-dependent protein folding. Curr Opin Chem Biol. 2000;4:162–5. https://doi.org/10.1016/s1367-5931(99)00070-8.

    Article  CAS  PubMed  Google Scholar 

  25. Kochanczyk T, et al. Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Sci Rep. 2016;6:36346. https://doi.org/10.1038/srep36346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li W, Zhang J, Wang J, Wang W. Metal-coupled folding of Cys2His2 zinc-finger. J Am Chem Soc. 2008;130:892–900. https://doi.org/10.1021/ja075302g.

    Article  CAS  PubMed  Google Scholar 

  27. Lee YM, Lim C. Physical basis of structural and catalytic Zn-binding sites in proteins. J Mol Biol. 2008;379:545–53. https://doi.org/10.1016/j.jmb.2008.04.004.

    Article  CAS  PubMed  Google Scholar 

  28. Pace NJ, Weerapana E. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules. 2014;4:419–34. https://doi.org/10.3390/biom4020419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. King JC, et al. Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. 2016. https://doi.org/10.3945/jn.115.220079.

  30. Lu M, Fu D. Structure of the zinc transporter YiiP. Science. 2007;317:1746–8. https://doi.org/10.1126/science.1143748.

    Article  CAS  PubMed  Google Scholar 

  31. Eide DJ. Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta. 2006;1763:711–22. https://doi.org/10.1016/j.bbamcr.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang T, et al. Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway. Sci Adv. 2017;3:e1700344. https://doi.org/10.1126/sciadv.1700344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Calmettes C, et al. The molecular mechanism of zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat Commun. 2015;6:7996. https://doi.org/10.1038/ncomms8996.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JK, et al. Elucidating the role of metal ions in carbonic anhydrase catalysis. Nat Commun. 2020;11:4557. https://doi.org/10.1038/s41467-020-18425-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Theorell H, Mc KJ. Mechanism of action of liver alcohol dehydrogenase. Nature. 1961;192:47–50. https://doi.org/10.1038/192047a0.

    Article  CAS  PubMed  Google Scholar 

  36. Kim B, Lee WW. Regulatory role of zinc in immune cell signaling. Mol Cell. 2021;44:335–41. https://doi.org/10.14348/molcells.2021.0061.

    Article  CAS  Google Scholar 

  37. Murakami M, Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008;99:1515–22. https://doi.org/10.1111/j.1349-7006.2008.00854.x.

    Article  CAS  PubMed  Google Scholar 

  38. Beyersmann D, Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14:331–41. https://doi.org/10.1023/a:1012905406548.

    Article  CAS  PubMed  Google Scholar 

  39. Outten CE, O’Halloran TV. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science. 2001;292:2488–92. https://doi.org/10.1126/science.1060331.

    Article  CAS  PubMed  Google Scholar 

  40. Gilston BA, et al. Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol. 2014;12:e1001987. https://doi.org/10.1371/journal.pbio.1001987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andreini C, Banci L, Bertini I, Rosato A. Counting the zinc-proteins encoded in the human genome. J Proteome Res. 2006;5:196–201. https://doi.org/10.1021/pr050361j.

    Article  CAS  PubMed  Google Scholar 

  42. Passerini A, Andreini C, Menchetti S, Rosato A, Frasconi P. Predicting zinc binding at the proteome level. BMC Bioinform. 2007;8:39. https://doi.org/10.1186/1471-2105-8-39.

    Article  CAS  Google Scholar 

  43. Maret W. Zinc and the zinc proteome. Met Ions Life Sci. 2013;12:479–501. https://doi.org/10.1007/978-94-007-5561-1_14.

    Article  PubMed  Google Scholar 

  44. Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017;18:2222. https://doi.org/10.3390/ijms18102222.

    Article  CAS  PubMed Central  Google Scholar 

  45. Emdin SO, Dodson GG, Cutfield JM, Cutfield SM. Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia. 1980;19:174–82. https://doi.org/10.1007/BF00275265.

    Article  CAS  PubMed  Google Scholar 

  46. Cruz KJC, et al. Zinc and insulin resistance: biochemical and molecular aspects. Biol Trace Elem Res. 2018;186:407–12. https://doi.org/10.1007/s12011-018-1308-z.

    Article  CAS  PubMed  Google Scholar 

  47. Fallah A, Mohammad-Hasani A, Colagar AH. Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertilization. J Reprod Infertil. 2018;19:69–81.

    PubMed  PubMed Central  Google Scholar 

  48. Grieger JA, et al. Maternal selenium, copper and zinc concentrations in early pregnancy, and the association with fertility. Nutrients. 2019;11:1609. https://doi.org/10.3390/nu11071609.

    Article  CAS  PubMed Central  Google Scholar 

  49. Williams RB, Mills CF. The experimental production of zinc deficiency in the rat. Br J Nutr. 1970;24:989–1003. https://doi.org/10.1079/bjn19700102.

    Article  CAS  PubMed  Google Scholar 

  50. Kim AM, Vogt S, O’Halloran TV, Woodruff TK. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol. 2010;6:674–81. https://doi.org/10.1038/nchembio.419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim AM, et al. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol. 2011;6:716–23. https://doi.org/10.1021/cb200084y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Que EL, et al. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat Chem. 2015;7:130–9. https://doi.org/10.1038/nchem.2133.

    Article  CAS  PubMed  Google Scholar 

  53. Kong BY, et al. Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol Hum Reprod. 2014;20:1077–89. https://doi.org/10.1093/molehr/gau066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bai X, Moraes TF, Reithmeier RAF. Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol. 2017;34:1–32. https://doi.org/10.1080/09687688.2018.1448123.

    Article  CAS  PubMed  Google Scholar 

  55. Colas C, Ung PM, Schlessinger A. SLC transporters: structure, function, and drug discovery. Medchemcomm. 2016;7:1069–81. https://doi.org/10.1039/C6MD00005C.

    Article  CAS  PubMed  Google Scholar 

  56. Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Asp Med. 2013;34:612–9. https://doi.org/10.1016/j.mam.2012.05.011.

    Article  CAS  Google Scholar 

  57. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95:749–84. https://doi.org/10.1152/physrev.00035.2014.

    Article  CAS  PubMed  Google Scholar 

  58. Hara T, et al. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci. 2017;67:283–301. https://doi.org/10.1007/s12576-017-0521-4.

    Article  CAS  PubMed  Google Scholar 

  59. Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem. 2021;296:100320. https://doi.org/10.1016/j.jbc.2021.100320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shusterman E, et al. ZnT-1 extrudes zinc from mammalian cells functioning as a Zn(2+)/H(+) exchanger. Metallomics. 2014;6:1656–63. https://doi.org/10.1039/c4mt00108g.

    Article  CAS  PubMed  Google Scholar 

  61. Ohana E, et al. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem. 2009;284:17677–86. https://doi.org/10.1074/jbc.M109.007203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chao Y, Fu D. Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem. 2004;279:17173–80. https://doi.org/10.1074/jbc.M400208200.

    Article  CAS  PubMed  Google Scholar 

  63. Lin W, Chai J, Love J, Fu D. Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB. J Biol Chem. 2010;285:39013–20. https://doi.org/10.1074/jbc.M110.180620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Girijashanker K, et al. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol. 2008;73:1413–23. https://doi.org/10.1124/mol.107.043588.

    Article  CAS  PubMed  Google Scholar 

  65. Gaither LA, Eide DJ. Functional expression of the human hZIP2 zinc transporter. J Biol Chem. 2000;275:5560–4. https://doi.org/10.1074/jbc.275.8.5560.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang T, Sui D, Hu J. Structural insights of ZIP4 extracellular domain critical for optimal zinc transport. Nat Commun. 2016;7:11979. https://doi.org/10.1038/ncomms11979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilkey JC, Jaffe LF, Ridgway EB, Reynolds GT. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978;76:448–66. https://doi.org/10.1083/jcb.76.2.448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tokmakov AA, Stefanov VE, Iwasaki T, Sato K, Fukami Y. Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci. 2014;15:18659–76. https://doi.org/10.3390/ijms151018659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takayama J, Fujita M, Onami S. In vivo live imaging of calcium waves and other cellular processes during fertilization in Caenorhabditis elegans. Bio Protoc. 2017;7:e2205. https://doi.org/10.21769/BioProtoc.2205.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kury S, et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet. 2002;31:239–40. https://doi.org/10.1038/ng913.

    Article  CAS  PubMed  Google Scholar 

  71. Ziliotto S, et al. Activated zinc transporter ZIP7 as an indicator of anti-hormone resistance in breast cancer. Metallomics. 2019;11:1579–92. https://doi.org/10.1039/c9mt00136k.

    Article  CAS  PubMed  Google Scholar 

  72. Taylor KM, et al. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology. 2008;149:4912–20. https://doi.org/10.1210/en.2008-0351.

    Article  CAS  PubMed  Google Scholar 

  73. H. Diabetes Genetics Initiative of Broad Institute of et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6. https://doi.org/10.1126/science.1142358.

    Article  CAS  Google Scholar 

  74. Boesgaard TW, et al. The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients—the EUGENE2 study. Diabetologia. 2008;51:816–20. https://doi.org/10.1007/s00125-008-0955-6.

    Article  CAS  PubMed  Google Scholar 

  75. Lazarczyk M, et al. Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. J Exp Med. 2008;205:35–42. https://doi.org/10.1084/jem.20071311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zou J, Milon BC, Desouki MM, Costello LC, Franklin RB. hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1). Prostate. 2011;71:1518–24. https://doi.org/10.1002/pros.21368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim JH, et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell. 2014;156:730–43. https://doi.org/10.1016/j.cell.2014.01.007.

    Article  CAS  PubMed  Google Scholar 

  78. Giunta C, et al. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome—an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet. 2008;82:1290–305. https://doi.org/10.1016/j.ajhg.2008.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andrews GK, Wang H, Dey SK, Palmiter RD. Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis. 2004;40:74–81. https://doi.org/10.1002/gene.20067.

    Article  CAS  PubMed  Google Scholar 

  80. Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK. Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis. 2006;44:239–51. https://doi.org/10.1002/dvg.20211.

    Article  CAS  PubMed  Google Scholar 

  81. Kambe T, Geiser J, Lahner B, Salt DE, Andrews GK. Slc39a1 to 3 (subfamily II) zip genes in mice have unique cell-specific functions during adaptation to zinc deficiency. Am J Phys Regul Integr Comp Phys. 2008;294:R1474–81. https://doi.org/10.1152/ajpregu.00130.2008.

    Article  CAS  Google Scholar 

  82. Galvez-Peralta M, et al. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. PLoS One. 2012;7:e36055. https://doi.org/10.1371/journal.pone.0036055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dufner-Beattie J, et al. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet. 2007;16:1391–9. https://doi.org/10.1093/hmg/ddm088.

    Article  CAS  PubMed  Google Scholar 

  84. Itsumura N, et al. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. PLoS One. 2013;8:e64045. https://doi.org/10.1371/journal.pone.0064045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang L, Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet. 1997;17:292–7. https://doi.org/10.1038/ng1197-292.

    Article  CAS  PubMed  Google Scholar 

  86. Menezo Y, et al. Zinc concentrations in serum and follicular fluid during ovarian stimulation and expression of Zn2+ transporters in human oocytes and cumulus cells. Reprod BioMed Online. 2011;22:647–52. https://doi.org/10.1016/j.rbmo.2011.03.015.

    Article  CAS  PubMed  Google Scholar 

  87. Hester J, Hanna-Rose W, Diaz F. Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression. Comp Biochem Physiol C Toxicol Pharmacol. 2017;191:203–9. https://doi.org/10.1016/j.cbpc.2016.09.006.

    Article  CAS  PubMed  Google Scholar 

  88. Mendoza AD, Woodruff TK, Wignall SM, O’Halloran TV. Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol. 2017;191:194–202. https://doi.org/10.1016/j.cbpc.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  89. Mendoza AD, Sue A, Antipova O, Vogt S, Woodruff TK, Wignall SM, O'Halloran TV. Dynamic zinc fluxes regulate meiotic progression in C. elegans oocytes. Biol Reprod. 2022. https://doi.org/10.1093/biolre/ioac064.

  90. Liu Z, Chen L, Shang Y, Huang P, Miao L. The micronutrient element zinc modulates sperm activation through the SPE-8 pathway in Caenorhabditis elegans. Development. 2013;140:2103–7. https://doi.org/10.1242/dev.091025.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao Y, et al. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes. PLoS Biol. 2018;16:e2005069. https://doi.org/10.1371/journal.pbio.2005069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tan CH, Kornfeld K. Zinc is an intracellular signal during sperm activation in Caenorhabditis elegans. Development. 2021;148:dev199836. https://doi.org/10.1242/dev.199836.

    Article  CAS  PubMed  Google Scholar 

  93. Corsi AK, Wightman B, Chalfie M. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics. 2015;200:387–407. https://doi.org/10.1534/genetics.115.176099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lints R, Halls DH. Reproductive system, overview. WormAtlas. 2009. https://doi.org/10.3908/wormatlas.1.21.

  95. Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56:110–56. https://doi.org/10.1016/0012-1606(77)90158-0.

    Article  CAS  PubMed  Google Scholar 

  96. Kimble J, Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979;70:396–417. https://doi.org/10.1016/0012-1606(79)90035-6.

    Article  CAS  PubMed  Google Scholar 

  97. C. e. S. Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282:2012–8. https://doi.org/10.1126/science.282.5396.2012.

    Article  Google Scholar 

  98. Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics. 2018;210:445–61. https://doi.org/10.1534/genetics.118.301307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Paix A, Folkmann A, Rasoloson D, Seydoux G. High efficiency, homology-directed genome editing in caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics. 2015;201:47–54. https://doi.org/10.1534/genetics.115.179382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Friedland AE, et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods. 2013;10:741–3. https://doi.org/10.1038/nmeth.2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim H, et al. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics. 2014;197:1069–80. https://doi.org/10.1534/genetics.114.166389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roh HC, Collier S, Guthrie J, Robertson JD, Kornfeld K. Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab. 2012;15:88–99. https://doi.org/10.1016/j.cmet.2011.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Roh HC, et al. ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis. PLoS Genet. 2013;9:e1003522. https://doi.org/10.1371/journal.pgen.1003522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Roh HC, et al. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Res. 2015;43:803–16. https://doi.org/10.1093/nar/gku1360.

    Article  CAS  PubMed  Google Scholar 

  105. Dietrich N, Schneider DL, Kornfeld K. A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res. 2017;45:11658–72. https://doi.org/10.1093/nar/gkx762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bruinsma JJ, Jirakulaporn T, Muslin AJ, Kornfeld K. Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell. 2002;2:567–78. https://doi.org/10.1016/s1534-5807(02)00151-x.

    Article  CAS  PubMed  Google Scholar 

  107. Yoder JH, Chong H, Guan KL, Han M. Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J. 2004;23:111–9. https://doi.org/10.1038/sj.emboj.7600025.

    Article  CAS  PubMed  Google Scholar 

  108. Earley BJ, Mendoza AD, Tan CH, Kornfeld K. Zinc homeostasis and signaling in the roundworm C. elegans. Biochim Biophys Acta Mol Cell Res. 2021;1868:118882. https://doi.org/10.1016/j.bbamcr.2020.118882.

    Article  CAS  PubMed  Google Scholar 

  109. Davis DE, et al. The cation diffusion facilitator gene cdf-2 mediates zinc metabolism in Caenorhabditis elegans. Genetics. 2009;182:1015–33. https://doi.org/10.1534/genetics.109.103614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chapman EM, et al. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun. 2019;10:1791. https://doi.org/10.1038/s41467-019-09829-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stiernagle T. Maintenance of C. elegans. WormBook. 2006;1-11. https://doi.org/10.1895/wormbook.1.101.1.

  112. Hsu PD, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827–32. https://doi.org/10.1038/nbt.2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–5. https://doi.org/10.1093/nar/gky354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Arribere JA, et al. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics. 2014;198:837–46. https://doi.org/10.1534/genetics.114.169730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34:339–44. https://doi.org/10.1038/nbt.3481.

    Article  CAS  PubMed  Google Scholar 

  116. Muschiol D, Schroeder F, Traunspurger W. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecol. 2009;9:14. https://doi.org/10.1186/1472-6785-9-14.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. https://doi.org/10.1038/nmeth.2019.

    Article  CAS  PubMed  Google Scholar 

  118. Wolff ID, Divekar NS, Wignall SM. Methods for investigating cell division mechanisms in C. elegans. Methods Mol Biol. 2022;2415:19–35. https://doi.org/10.1007/978-1-0716-1904-9_2.

    Article  PubMed  Google Scholar 

  119. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Version 4.4.1. 2021. https://www.R-project.org/.

  120. RStudio Team. RStudio: Integrated development for R. Boston, MA: RStudio, PBC. Version 1.4.1717. 2021. https://www.rstudio.com.

  121. Fox J, Weisberg S. An {R} companion to applied regression. 3rd Ed. Thousand Oaks, CA: Sage 2019.

  122. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org

    Book  Google Scholar 

  123. Kassambara A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0. 2020. https://CRAN.R-project.org/package=ggpubr.

  124. Robinson D, Hayes A, Couch S. broom: convert statistical objects into tidy tibbles. R package version 0.7.9. 2021. https://CRAN.R-project.org/package=broom.

  125. Wickham H, François R, Henry L, Müller K. dplyr: a grammar of data manipulation. Version 1.0.7. 2021. https://CRAN.R-project.org/package=dplyr.

  126. Wickham H, Bryan J. readxl: read excel files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl.

  127. Taylor KM, et al. Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration. Biochem J. 2016;473:2531–44. https://doi.org/10.1042/BCJ20160388.

    Article  CAS  PubMed  Google Scholar 

  128. Reinke V, Gil IS, Ward S, Kazmer K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development. 2004;131:311–23. https://doi.org/10.1242/dev.00914.

    Article  CAS  PubMed  Google Scholar 

  129. Ortiz MA, Noble D, Sorokin EP, Kimble J. A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans. G3 (Bethesda). 2014;4:1765–72. https://doi.org/10.1534/g3.114.012351.

    Article  CAS  Google Scholar 

  130. Stoeckius M, et al. Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. EMBO J. 2014;33:1751–66. https://doi.org/10.15252/embj.201488769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta. 2003;1611:16–30. https://doi.org/10.1016/s0005-2736(03)00048-8.

    Article  CAS  PubMed  Google Scholar 

  132. Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett. 2005;579:427–32. https://doi.org/10.1016/j.febslet.2004.12.006.

    Article  CAS  PubMed  Google Scholar 

  133. Bin BH, et al. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem. 2011;286:40255–65. https://doi.org/10.1074/jbc.M111.256784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Seeler JF, et al. Metal ion fluxes controlling amphibian fertilization. Nat Chem. 2021;13:683–91. https://doi.org/10.1038/s41557-021-00705-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tian X, Diaz FJ. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol. 2013;376:51–61. https://doi.org/10.1016/j.ydbio.2013.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hu Q, et al. Zinc dynamics during drosophila oocyte maturation and egg activation. iScience. 2020;23:101275. https://doi.org/10.1016/j.isci.2020.101275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Beaver LM, et al. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. J Nutr Biochem. 2017;43:78–87. https://doi.org/10.1016/j.jnutbio.2017.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Croxford TP, McCormick NH, Kelleher SL. Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. J Nutr. 2011;141:359–65. https://doi.org/10.3945/jn.110.131318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Eisenmann DM, Kim SK. Protruding vulva mutants identify novel loci and Wnt signaling factors that function during Caenorhabditis elegans vulva development. Genetics. 2000;156:1097–116. https://doi.org/10.1093/genetics/156.3.1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hurd DD, Kemphues KJ. PAR-1 is required for morphogenesis of the Caenorhabditis elegans vulva. Dev Biol. 2003;253:54–65. https://doi.org/10.1006/dbio.2002.0866.

    Article  CAS  PubMed  Google Scholar 

  141. Seydoux G, Schedl T, Greenwald I. Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans. Cell. 1990;61:939–51. https://doi.org/10.1016/0092-8674(90)90060-r.

    Article  CAS  PubMed  Google Scholar 

  142. McCarter J, Bartlett B, Dang T, Schedl T. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol. 1997;181:121–43. https://doi.org/10.1006/dbio.1996.8429.

    Article  CAS  PubMed  Google Scholar 

  143. Killian DJ, Hubbard EJ. Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line. Dev Biol. 2005;279:322–35. https://doi.org/10.1016/j.ydbio.2004.12.021.

    Article  CAS  PubMed  Google Scholar 

  144. Korta DZ, Hubbard EJ. Soma-germline interactions that influence germline proliferation in Caenorhabditis elegans. Dev Dyn. 2010;239:1449–59. https://doi.org/10.1002/dvdy.22268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100:64–119. https://doi.org/10.1016/0012-1606(83)90201-4.

    Article  CAS  PubMed  Google Scholar 

  146. Schindler AJ, Sherwood DR. Morphogenesis of the caenorhabditis elegans vulva. Wiley Interdiscip Rev Dev Biol. 2013;2:75–95. https://doi.org/10.1002/wdev.87.

    Article  CAS  PubMed  Google Scholar 

  147. Hwang BJ, Sternberg PW. A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. Development. 2004;131:143–51. https://doi.org/10.1242/dev.00924.

    Article  CAS  PubMed  Google Scholar 

  148. Que EL, et al. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy. Integr Biol (Camb). 2017;9:135–44. https://doi.org/10.1039/c6ib00212a.

    Article  CAS  Google Scholar 

  149. Lee S, et al. Redundant roles of four ZIP family members in zinc homeostasis and seed development in Arabidopsis thaliana. Plant J. 2021. https://doi.org/10.1111/tpj.15506.

  150. Merritt C, Rasoloson D, Ko D, Seydoux G. 3’ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol. 2008;18:1476–82. https://doi.org/10.1016/j.cub.2008.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Haenni S, et al. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3’-end-seq. Nucleic Acids Res. 2012;40:6304–18. https://doi.org/10.1093/nar/gks282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Garwin SA, et al. Interrogating intracellular zinc chemistry with a long stokes shift zinc probe ZincBY-4. J Am Chem Soc. 2019;141:16696–705. https://doi.org/10.1021/jacs.9b06442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mendoza for many helpful discussions regarding C. elegans zinc transporter biology, R. Brielmann and the Morimoto lab for instruction and use of their microinjection setup, and Dr. Zhang, Dr. Crombie, and the Andersen lab for assistance and use of their worm plate imaging setup. Microscopy was performed at the Biological Imaging Facility at Northwestern University (RRID:SCR_017767), graciously supported by the Chemistry for Life Processes Institute, the NU Office for Research, and the Department of Molecular Biosciences. Dr. Hornick and Dr. Antonova were helpful in resolving microscopy issues and recommending imaging parameters.

Funding

Research in this study was supported by National Institute of Health grants R01GM115848 (TKW and TVO), U54CA193419 (TVO), R01GM038784 (TVO), and R01GM124354 (SMW).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the research and experiments. ACS performed the experiments and all authors contributed to data analysis and interpretation. ACS drafted the initial manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thomas V. O’Halloran.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1491 kb)

ESM 2

(ZIP 482796 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sue, A.C., Wignall, S.M., Woodruff, T.K. et al. Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 39, 1261–1276 (2022). https://doi.org/10.1007/s10815-022-02495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02495-z

Keywords

  • Zinc transporter
  • Caenorhabditis elegans
  • Germline development
  • Fecundity
  • Germline gene expression