Skip to main content

Advertisement

Log in

Regulation of antral follicular growth by an interplay between gonadotropins and their receptors

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Knowledge of the growth and maturation of human antral follicles is based mainly on concepts and deductions from clinical observations and animal models. To date, new experimental approaches and in vitro data contributed to a deep comprehension of gonadotropin receptors’ functioning and may provide new insights into the mechanisms regulating still unclear physiological events. Among these, the production of androgen in the absence of proper LH levels, the programming of follicular atresia and dominance are some of the most intriguing. Starting from evolutionary issues at the basis of the gonadotropin receptor signal specificity, we draw a new hypothesis explaining the molecular mechanisms of the antral follicular growth, based on the modulation of endocrine signals by receptor-receptor interactions. The “heteromer hypothesis” explains how opposite death and life signals are delivered by gonadotropin receptors and other membrane partners, mediating steroidogenesis, apoptotic events, and the maturation of the dominant follicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev. 1997;18:739–73.

    CAS  PubMed  Google Scholar 

  2. Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002;23:141–74.

    Article  CAS  PubMed  Google Scholar 

  3. Casarini L, Santi D, Brigante G, Simoni M. Two hormones for one receptor: evolution, biochemistry, actions, and pathophysiology of LH and hCG. Endocr Rev. 2018;39:549–92.

    Article  PubMed  Google Scholar 

  4. Costagliola S, Urizar E, Mendive F, Vassart G. Specificity and promiscuity of gonadotropin receptors. Reproduction. 2005;130:275–81.

    Article  CAS  PubMed  Google Scholar 

  5. Talmadge K, Vamvakopoulos NC, Fiddes JC. Evolution of the genes for the β subunits of human chorionic gonadotropin and luteinizing hormone. Nature. 1984;307:37–40.

    Article  CAS  PubMed  Google Scholar 

  6. Fiddes JC, Goodman HM. The cDNA for the β-subunit of human chorionic gonadotropin suggests evolution of a gene by readthrough into the 3′-untranslated region. Nature. 1980;286:684–7.

    Article  CAS  PubMed  Google Scholar 

  7. Furuhashi M, Suganuma N. Effect of additional N-glycosylation signal in the N-terminal region on intracellular function of the human gonadotropin alpha-subunit. Endocr J. 2003;50:245–53.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Campayo V, Sugahara T, Boime I. Unmasking a new recognition signal for O-linked glycosylation in the chorionic gonadotropin beta subunit. Mol Cell Endocrinol. 2002;194:63–70.

    Article  CAS  PubMed  Google Scholar 

  9. Shao K, Balasubramanian SV, Pope CM, Bahl OP. Effect of individual N-glycosyl chains in the beta-subunit on the conformation of human choriogonadotropin. Mol Cell Endocrinol. 1998;146:39–48.

    Article  CAS  PubMed  Google Scholar 

  10. Koistinen H, Koel M, Peters M, Rinken A, Lundin K, Tuuri T, et al. Hyperglycosylated hCG activates LH/hCG-receptor with lower activity than hCG. Mol Cell Endocrinol. 2019;479:103–9.

    Article  CAS  PubMed  Google Scholar 

  11. Van Loenen HJ, Van Gelderen-Boele S, Flinterman JF, Merz WE, Rommerts FFG. The relative importance of the oligosaccharide units in human chorionic gonadotropin (CG) for LH/CG receptor activation in rat Leydig cells and mouse Leydig tumor cells. J Endocrinol. 1995;147:367–75.

    Article  PubMed  Google Scholar 

  12. Matzuk MM, Hsueh AJW, Lapolt P, Tsafriri A, Keene JL, Boime I, et al. The biological role of the carboxyl-terminal extension of human chorionic gonadotroin/3-subunit. Endocrinology. Oxford Academic. 1990;126:376–83.

    Article  CAS  PubMed  Google Scholar 

  13. Sower SA, Freamat M, Kavanaugh SI. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys. Gen Comp Endocrinol. 2009;161:20–9.

    Article  CAS  PubMed  Google Scholar 

  14. Buechi HB, Bridgham JT. Evolution of specificity in cartilaginous fish glycoprotein hormones and receptors. Gen Comp Endocrinol. 2017;246:309–20.

    Article  CAS  PubMed  Google Scholar 

  15. Casarini L, Santi D, Marino M. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success. Reproduction. 2015;150:R175–84.

    Article  CAS  PubMed  Google Scholar 

  16. Lazzaretti C, Secco V, Paradiso E, Sperduti S, Rutz C, Kreuchwig A, et al. Identification of key receptor residues discriminating human chorionic gonadotropin (hCG)- and luteinizing hormone (LH)-specific signaling. Int J Mol Sci. 2020;22:1–14.

    Article  CAS  Google Scholar 

  17. Bentov Y, Kenigsberg S, Casper RF. A novel luteinizing hormone/chorionic gonadotropin receptor mutation associated with amenorrhea, low oocyte yield, and recurrent pregnancy loss. Fertil Steril. 2012;97:1165–8.

    Article  CAS  PubMed  Google Scholar 

  18. Montanelli L, Van Durme JJJ, Smits G, Bonomi M, Rodien P, Devor EJ, et al. Modulation of ligand selectivity associated with activation of the transmembrane region of the human follitropin receptor. Mol Endocrinol. 2004;18:2061–73.

    Article  CAS  PubMed  Google Scholar 

  19. Smits G, Olatunbosun O, Delbaere A, Pierson R, Vassart G, Costagliola S. Ovarian hyperstimulation syndrome due to a mutation in the follicle-stimulating hormone receptor. N Engl J Med. 2003;349:760–6.

    Article  CAS  PubMed  Google Scholar 

  20. Vasseur C, Rodien P, Beau I, Desroches A, Gérard C, de Poncheville L, et al. A chorionic gonadotropin-sensitive mutation in the follicle-stimulating hormone receptor as a cause of familial gestational spontaneous ovarian hyperstimulation syndrome. N Engl J Med. 2003;349:753–9.

    Article  CAS  PubMed  Google Scholar 

  21. Thachil J, Agarwal S. Understanding the COVID-19 coagulopathy spectrum. Anaesthesia. 2020;75:1432–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-function relationships of the follicle-stimulating hormone receptor. Front Endocrinol (Lausanne). 2018;9:707.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Banerjee AA, Mahale SD. Role of the Extracellular and intracellular loops of follicle-stimulating hormone receptor in its function. Front Endocrinol (Lausanne). 2015;6:110.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Puett D, Li Y, DeMars G, Angelova K, Fanelli F. A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein. Mol Cell Endocrinol. 2007;260–262:126–36.

    Article  PubMed  CAS  Google Scholar 

  25. Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev. 2013;34:691–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Casarini L, Crépieux P. Molecular mechanisms of action of FSH. Front Endocrinol (Lausanne). 2019;10:305.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Casarini L, Simoni M. Recent advances in understanding gonadotropin signaling. Fac Rev. 2021;10:41.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ulloa-Aguirre A, Reiter E, Crepieux P. FSH receptor signaling: complexity of interactions and signal diversity. Endocrinology. 2018;159:3020–35.

    Article  CAS  PubMed  Google Scholar 

  29. Sayers N, Hanyaloglu AC. Intracellular follicle-stimulating hormone receptor trafficking and signaling. Front Endocrinol (Lausanne). 2018;9:653.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang W, Qiao Y, Li Z. New insights into modes of GPCR activation. Trends Pharmacol Sci. 2018;39:367–86.

    Article  CAS  PubMed  Google Scholar 

  31. Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, et al. FSH for the treatment of male infertility. Int J Mol Sci. 2020;21:2270.

    Article  CAS  PubMed Central  Google Scholar 

  32. Santi D, Crépieux P, Reiter E, Spaggiari G, Brigante G, Casarini L, et al. Follicle-stimulating hormone (FSH) action on spermatogenesis: a focus on physiological and therapeutic roles. J Clin Med. 2020;9:1014.

    Article  CAS  PubMed Central  Google Scholar 

  33. Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N Engl J Med. 1992;326:179–83.

    Article  CAS  PubMed  Google Scholar 

  34. Latronico AC, Anasti J, Arnhold IJP, Rapaport R, Mendonca BB, Bloise W, et al. Brief report: testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N Engl J Med. 1996;334:507–12.

    Article  CAS  PubMed  Google Scholar 

  35. Martinat N, Crépieux P, Reiter E, Guillou F. Extracellular signal-regulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reprod Nutr Dev. 2005;45:101–8.

    Article  CAS  PubMed  Google Scholar 

  36. Manna PR, Jo Y, Stocco DM. Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling. J Endocrinol. 2007;193:53–63.

    Article  CAS  PubMed  Google Scholar 

  37. Ulloa-Aguirre A, Lira-Albarrán S. Clinical applications of gonadotropins in the male. Prog Mol Biol Transl Sci. 2016;143:121–74.

    Article  CAS  PubMed  Google Scholar 

  38. Reis FM, Cobellis L, Luisi S, Driul L, Florio P, Faletti A, et al. Paracrine/autocrine control of female reproduction. Gynecol Endocrinol. 2000;14:464–75.

    Article  CAS  PubMed  Google Scholar 

  39. Poulsen LC, Bøtkjær JA, Østrup O, Petersen KB, Yding Andersen C, Grøndahl ML, et al. Two waves of transcriptomic changes in periovulatory human granulosa cells. Hum Reprod. 2020;35:1230–45.

    Article  CAS  PubMed  Google Scholar 

  40. Chen YJ, Hsiao PW, Lee MT, Mason JI, Ke FC, Hwang JJ. Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. J Endocrinol. 2007;192:405–19.

    Article  CAS  PubMed  Google Scholar 

  41. Jeppesen JV, Kristensen SG, Nielsen ME, Humaidan P, Dal Canto M, Fadini R, et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab. 2012;97:E1524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stricker R, Eberhart R, Chevailler MC, Quinn FA, Bischof P, Stricker R. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT® analyzer. Clin Chem Lab Med. 2006;44:883–7.

    Article  CAS  PubMed  Google Scholar 

  43. Broekmans FJ. Individualization of FSH doses in assisted reproduction: facts and fiction. Front Endocrinol (Lausanne). 2019;10:181.

  44. Khan DR, Fournier É, Dufort I, Richard FJ, Singh J, Sirard MA. Meta-analysis of gene expression profiles in granulosa cells during folliculogenesis. Reproduction. 2016;151:R103–10.

    Article  CAS  PubMed  Google Scholar 

  45. Palter SF, Tavares AB, Hourvitz A, Veldhuis JD, Adashi EY. Are estrogens of import to primate/human ovarian folliculogenesis? Endocr Rev. 2001;22:389–424.

    CAS  PubMed  Google Scholar 

  46. Casarini L, Riccetti L, De Pascali F, Gilioli L, Marino M, Vecchi E, et al. Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro. Int J Mol Sci. 2017;18:926.

    Article  PubMed Central  CAS  Google Scholar 

  47. Zeleznik AJ. The physiology of follicle selection. Reprod Biol Endocrinol. 2004;2:31.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jonas KC, Hanyaloglu AC. Impact of G protein-coupled receptor heteromers in endocrine systems. Mol Cell Endocrinol. 2017;449:21–7.

    Article  CAS  PubMed  Google Scholar 

  49. Casarini L, Santi D, Simoni M, Potì F. “Spare” luteinizing hormone receptors: facts and fiction. Trends Endocrinol Metab. 2018;29:208–17.

    Article  CAS  PubMed  Google Scholar 

  50. Riccetti L, Sperduti S, Lazzaretti C, Casarini L, Simoni M. The cAMP/PKA pathway: steroidogenesis of the antral follicular stage. Minerva Ginecol. 2018;70:516–24.

    Article  PubMed  Google Scholar 

  51. Light A, Hammes SR. Membrane receptor cross talk in steroidogenesis: recent insights and clinical implications. Steroids. 2013;78:633–8.

    Article  CAS  PubMed  Google Scholar 

  52. Fuxe K, Marcellino D, Borroto-Escuela DO, Frankowska M, Ferraro L, Guidolin D, et al. The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. J Recept Signal Transduct Res. 2010;30:272–83.

    Article  CAS  PubMed  Google Scholar 

  53. Ferré S, Ciruela F, Casadó V, Pardo L. Oligomerization of G protein-coupled receptors: still doubted? Prog Mol Biol Transl Sci. 2020;169:297–321.

    Article  PubMed  CAS  Google Scholar 

  54. Jiang X, Fischer D, Chen X, McKenna SD, Liu H, Sriraman V, et al. Evidence for follicle-stimulating hormone receptor as a functional trimer. J Biol Chem. 2014;289:14273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gomes I, Jordan BA, Gupta A, Rios C, Trapaidze N, Devi LA. G protein coupled receptor dimerization: implications in modulating receptor function. J Mol Med (Berl). 2001;79:226–42.

    Article  CAS  Google Scholar 

  56. Jonas KC, Rivero-Müller A, Huhtaniemi IT, Hanyaloglu AC. G protein-coupled receptor transactivation: from molecules to mice. Methods Cell Biol. 2013;117:433–50.

    Article  CAS  PubMed  Google Scholar 

  57. Agwuegbo UC, Jonas KC. Molecular and functional insights into gonadotropin hormone receptor dimerization and oligomerization. Minerva Ginecol. 2018;70:539–48.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Milligan G, Smith NJ. Allosteric modulation of heterodimeric G-protein-coupled receptors. Trends Pharmacol Sci. 2007;28:615–20.

    Article  CAS  PubMed  Google Scholar 

  59. Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol. 2009;5:688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas RM, Nechamen CA, Mazurkiewicz JE, Muda M, Palmer S, Dias JA. Follice-stimulating hormone receptor forms oligomers and shows evidence of carboxyl-terminal proteolytic processing. Endocrinology. 2007;148:1987–95.

    Article  CAS  PubMed  Google Scholar 

  61. Franco R, Martínez-Pinilla E, Lanciego JL, Navarro G. Basic pharmacological and structural evidence for class a g-protein-coupled receptor heteromerization. Front Pharmacol. 2016;7:76.

  62. Casarini L, Riccetti L, Paradiso E, Benevelli R, Lazzaretti C, Sperduti S, et al. Two human menopausal gonadotrophin (hMG) preparations display different early signaling in vitro. Mol Hum Reprod. 2020;26:894–905.

    Article  CAS  PubMed  Google Scholar 

  63. Jonas KC, Chen S, Virta M, Mora J, Franks S, Huhtaniemi I, Hanyaloglu AC. Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers. Sci Rep. 2018;8:2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feng X, Zhang M, Guan R, Segaloff DL. Heterodimerization between the lutropin and follitropin receptors is associated with an attenuation of hormone-dependent signaling. Endocrinology. 2013;154:3925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Law NC, Weck J, Kyriss B, Nilson JH, Hunzicker-Dunn M. Lhcgr expression in granulosa cells: roles for PKA-phosphorylated β-catenin, TCF3, and FOXO1. Mol Endocrinol. 2013;27:1295–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yung Y, Aviel-Ronen S, Maman E, Rubinstein N, Avivi C, Orvieto R, et al. Localization of luteinizing hormone receptor protein in the human ovary. Mol Hum Reprod. 2014;20:844–9.

    Article  CAS  PubMed  Google Scholar 

  67. Chrusciel M, Ponikwicka-Tyszko D, Wolczynski S, Huhtaniemi I, et al. Extragonadal FSHR expression and function-is it real? Front Endocrinol (Lausanne). 2019;10:32.

  68. Méduri G, Charnaux N, Driancourt M-A, Combettes L, Granet P, Vannier B, et al. Follicle-stimulating hormone receptors in oocytes? J Clin Endocrinol Metab. 2002;87:2266–76.

    Article  PubMed  Google Scholar 

  69. Pavlik R, Wypior G, Hecht S, Papadopoulos P, Kupka M, Thaler C, et al. Induction of G protein-coupled estrogen receptor (GPER) and nuclear steroid hormone receptors by gonadotropins in human granulosa cells. Histochem Cell Biol. Springer. 2011;136:289–99.

    Article  CAS  PubMed  Google Scholar 

  70. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:81–151.

    Article  CAS  PubMed  Google Scholar 

  71. Drummond AE, Findlay JK. The role of estrogen in folliculogenesis. Mol Cell Endocrinol. 1999;151:57–64.

    Article  CAS  PubMed  Google Scholar 

  72. Guo Y, Guo KJ, Huang L, Tong XG, Li X. Effect of estrogen deprivation on follicle/oocyte maturation and embryo development in mice. Chin Med J. 2004;117:498–502.

    CAS  PubMed  Google Scholar 

  73. Britt KL, Drummond AE, Cox VA, Dyson M, Wreford NG, Jones MEE, et al. An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene. Endocrinology. 2000;141:2614–23.

    Article  CAS  PubMed  Google Scholar 

  74. Peluso JJ, Delidow BC, Lynch J, White BA. Follicle-stimulating hormone and insulin regulation of 17 beta-estradiol secretion and granulosa cell proliferation within immature rat ovaries maintained in perifusion culture. Endocrinology. 1991;128:191–6.

    Article  CAS  PubMed  Google Scholar 

  75. Richards JS, Uilenbroek JT, Jonassen JA. Follicular growth in the rat: a reevaluation of the roles of FSH and LH. Adv Exp Med Biol. 1979;112:11–26.

    Article  CAS  PubMed  Google Scholar 

  76. Orisaka M, Tajima K, Tsang BK, Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res. 2009;2:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Aoyama M, Shiraishi A, Matsubara S, Horie K, Osugi T, Kawada T, et al. Identification of a new theca/interstitial cell-specific gene and its biological role in growth of mouse ovarian follicles at the gonadotropin-independent stage. Front Endocrinol (Lausanne) Frontiers Media S.A. 2019;10:553.

    Article  Google Scholar 

  78. Logan KA, Juengel JL, McNatty KP. Onset of steroidogenic enzyme gene expression during ovarian follicular development in sheep. Biol Reprod. 2002;66:906–16.

    Article  CAS  PubMed  Google Scholar 

  79. Jing R, Gu L, Li J, Gong Y. A transcriptomic comparison of theca and granulosa cells in chicken and cattle follicles reveals ESR2 as a potential regulator of CYP19A1 expression in the theca cells of chicken follicles. Comp Biochem Physiol - Part D Genomics Proteomics. Elsevier. 2018;27:40–53.

    Article  CAS  PubMed  Google Scholar 

  80. Kim I, Greenwald GS. Evidence for rapid loss of spare hCG receptors in the corpora lutea of the hypophysectomized rat. Mol Cell Endocrinol. 1985;40:123–8.

    Article  CAS  PubMed  Google Scholar 

  81. van Rossum J, Ariens EJ. Receptor-reserve and threshold-phenomena. II. Theories on drug-action and a quantitative approach to spare receptors and threshold values. Arch Int Pharmacodyn Thérapie. 1962;136:385–413.

    Google Scholar 

  82. Casarini L, Riccetti L, De Pascali F, Nicoli A, Tagliavini S, Trenti T, et al. Follicle-stimulating hormone potentiates the steroidogenic activity of chorionic gonadotropin and the anti-apoptotic activity of luteinizing hormone in human granulosa-lutein cells in vitro. Mol Cell Endocrinol. 2016;422:103–14.

    Article  CAS  PubMed  Google Scholar 

  83. Casarini L, Lispi M, Longobardi S, Milosa F, La Marca A, Tagliasacchi D, et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS One. 2012;7:e46682.

  84. Jonas KC, Fanelli F, Huhtaniemi IT, Hanyaloglu AC. Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. J Biol Chem. 2015;290:3875–92.

    Article  CAS  PubMed  Google Scholar 

  85. Lee CW, Ji I, Ji TH. Use of defined-function mutants to access receptor-receptor interactions. Methods. 2002;27:318–23.

    Article  CAS  PubMed  Google Scholar 

  86. Mazurkiewicz JE, Herrick-Davis K, Barroso M, Ulloa-Aguirre A, Lindau-Shepard B, Thomas RM, et al. Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biol Reprod. 2015;92:100.

  87. Rivero-Müller A, Chou YY, Ji I, Lajic S, Hanyaloglu AC, Jonas K, et al. Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci U S A. 2010;107:2319–24.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ji I, Lee C, Song Y, Michael Conn P, Ji TH. Cis- and Trans-activation of hormone receptors: the LH receptor. Mol Endocrinol. 2002;16:1299–308.

    Article  CAS  PubMed  Google Scholar 

  89. Ji I, Lee C, Jeoung M, Koo Y, Sievert GA, Ji TH. Trans-activation of mutant follicle-stimulating hormone receptors selectively generates only one of two hormone signals. Mol Endocrinol. 2004;18:968–78.

    Article  CAS  PubMed  Google Scholar 

  90. Fanchin R, Schonäuer LM, Righini C, Frydman N, Frydman R, Taieb J. Serum anti-Müllerian hormone dynamics during controlled ovarian hyperstimulation. Hum Reprod. 2003;18:328–32.

    Article  CAS  PubMed  Google Scholar 

  91. Arnhold IJ, Lofrano-Porto A, Latronico AC. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women. Horm Res. 2009;71:75–82.

    CAS  PubMed  Google Scholar 

  92. Pakarainen T, Zhang FP, Nurmi L, Poutanen M, Huhtaniemi I. Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse graafian follicles. Mol Endocrinol. 2005;19:2591–602.

    Article  CAS  PubMed  Google Scholar 

  93. Wang XN, Greenwald GS. Human chorionic gonadotropin or human recombinant follicle-stimulating hormone (FSH)-induced ovulation and subsequent fertilization and early embryo development in hypophysectomized FSH-primed mice. Endocrinology. 1993;132:2009–16.

    Article  CAS  PubMed  Google Scholar 

  94. Tapanainent JS, Lapolt PS, Perlas E, Hsueh AJW. Induction of ovarian follicle luteinization by recombinant follicle-stimulating hormone. Endocrinology. 1993;133:2875–80.

    Article  Google Scholar 

  95. Lapolt PS, Nishimori K, Fares FA, Perlas E, Boime I, Hsueh AJW. Enhanced stimulation of follicle maturation and ovulatory potential by long acting follicle-stimulating hormone agonists with extended carboxyl-terminal peptides. Endocrinology. 1992;131:2514–20.

    Article  CAS  PubMed  Google Scholar 

  96. Galway AB, Lapolt PS, Tsafriri A, Dargan CM, Boime I, Hsueh AJW. Recombinant follicle-stimulating hormone induces ovulation and tissue plasminogen activator expression in hypophysectomized rats. Endocrinology. 1990;127:3023–8.

    Article  CAS  PubMed  Google Scholar 

  97. Kristensen SG, Ebbesen P, Andersen CY. Transcriptional profiling of five isolated size-matched stages of human preantral follicles. Mol Cell Endocrinol. 2015;401:189–201.

    Article  CAS  PubMed  Google Scholar 

  98. Casarini L, Lazzaretti C, Paradiso E, Limoncella S, Riccetti L, Sperduti S, et al. Membrane estrogen receptor (GPER) and follicle-stimulating hormone receptor (FSHR) heteromeric complexes promote human ovarian follicle survival. iScience. 2020;23:101812.

  99. Casarini L, Reiter E, Simoni M. β-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Mol Cell Endocrinol. 2016;437:11–21.

    Article  CAS  PubMed  Google Scholar 

  100. Chaffin CL, Vandevoort CA. Follicle growth, ovulation, and luteal formation in primates and rodents: a comparative perspective. Exp Biol Med (Maywood). 2013;238:539–48.

    Article  CAS  Google Scholar 

  101. Chun SY, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJW. Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology. 1996;137:1447–56.

    Article  CAS  PubMed  Google Scholar 

  102. Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod. 1994;9:188–91.

    Article  CAS  PubMed  Google Scholar 

  103. Minegishi T, Tano M, Nakamura K, Nakamura M, Igarashi S, Ito I, et al. Regulation of follicle-stimulating hormone receptor. Horm Res. 1996;46(Suppl 1):37–44.

    Article  CAS  PubMed  Google Scholar 

  104. Minegishi T, Tano M, Nakamura K, Karino S, Miyamoto K, Ibuki Y. Regulation of follicle-stimulating hormone receptor messenger ribonucleic acid levels in cultured rat granulosa cells. Mol Cell Endocrinol. 1995;108:67–73.

    Article  CAS  PubMed  Google Scholar 

  105. Nordhoff V, Sonntag B, Von Tils D, Götte M, Schüring AN, Gromoll J, et al. Effects of the FSH receptor gene polymorphism p.N680S on cAMP and steroid production in cultured primary human granulosa cells. Reprod BioMed Online. 2011;23:196–203.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang YM, Roy SK. Downregulation of follicle-stimulating hormone (FSH)-receptor messenger RNA levels in the hamster ovary: effect of the endogenous and exogenous FSH. Biol Reprod. 2004;70:1580–8.

    Article  CAS  PubMed  Google Scholar 

  107. Donaubauer EM, Law NC, Hunzicker-Dunn ME. Follicle-stimulating hormone (FSH)-dependent regulation of extracellular regulated kinase (ERK) phosphorylation by the mitogen-activated protein (MAP) kinase phosphatase MKP3. J Biol Chem. 2016;291:19701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Donaubauer EM, Hunzicker-Dunn ME. Extracellular signal-regulated kinase (ERK)-dependent phosphorylation of Y-box-binding protein 1 (YB-1) enhances gene expression in granulosa cells in response to follicle-stimulating hormone (FSH). J Biol Chem. 2016;291:12145–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kayampilly PP, Menon KMJ. Inhibition of extracellular signal-regulated protein kinase-2 phosphorylation by dihydrotestosterone reduces follicle-stimulating hormone-mediated cyclin D2 messenger ribonucleic acid expression in rat granulosa cells. Endocrinology. 2004;145:1786–93.

    Article  CAS  PubMed  Google Scholar 

  110. Smith JS, Pack TF, Inoue A, Lee C, Zheng K, Choi I, et al. Noncanonical scaffolding of Gαi and β-arrestin by G protein-coupled receptors. Science. 2021;371:eaay1833.

  111. Tranchant T, Durand G, Gauthier C, Crépieux P, Ulloa-Aguirre A, Royère D, et al. Preferential β-arrestin signalling at low receptor density revealed by functional characterization of the human FSH receptor A189 V mutation. Mol Cell Endocrinol. 2011;331:109–18.

    Article  CAS  PubMed  Google Scholar 

  112. Amsterdam A, Tajima K, Frajese V, Seger R. Analysis of signal transduction stimulated by gonadotropins in granulosa cells. Mol Cell Endocrinol. 2003;202:77–80.

    Article  CAS  PubMed  Google Scholar 

  113. Channing C, Schaerf F, Anderson L, Tsafriri A. Ovarian follicular and luteal physiology - PubMed [Internet]. Internatioal Rev. Physiol. 1980 [cited 2022 Jan 16]. p. 117–201. Available from: https://pubmed.ncbi.nlm.nih.gov/6248477/.

  114. Maizels ET, Cottom J, Jones JCR, Hunzicker-dunn M. Follicle stimulating hormone (FSH) activates the p38 mitogen-activated protein kinase pathway, inducing small heat shock protein phosphorylation and cell rounding in immature rat ovarian granulosa cells. Endocrinology. 1998;139:3353–6.

    Article  CAS  PubMed  Google Scholar 

  115. Uma J, Muraly P, Verma-Kumar S, Medhamurthy R. Determination of onset of apoptosis in granulosa cells of the preovulatory follicles in the bonnet monkey (Macaca radiata): correlation with mitogen-activated protein kinase activities. Biol Reprod. 2003;69:1379–87.

    Article  CAS  PubMed  Google Scholar 

  116. Amsterdam A, Gold RS, Hosokawa K, Yoshida Y, Sasson R, Jung Y, et al. Crosstalk among multiple signaling pathways controlling ovarian cell death. Trends Endocrinol Metab. 1999;10:255–62.

    Article  CAS  PubMed  Google Scholar 

  117. Revankar CM, Vines CM, Cimino DF, Prossnitz ER. Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem. 2004;279:24578–84.

    Article  CAS  PubMed  Google Scholar 

  118. Amsterdam A, Dantes A, Selvaraj N, Aharoni D. Apoptosis in steroidogenic cells: structure-function analysis. Steroids. 1997;62:207–11.

    Article  CAS  PubMed  Google Scholar 

  119. Sperduti S, Lazzaretti C, Paradiso E, Anzivino C, Villani MT, De Feo G, et al. Quantification of hormone membrane receptor FSHR, GPER and LHCGR transcripts in human primary granulosa lutein cells by real-time quantitative PCR and digital droplet PCR. Gene Reports. Elsevier. 2021;23:101194.

    Article  Google Scholar 

  120. Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, et al. Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Sci Rep. 2017;7:940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Johnson AL, Bridgham JT, Swenson JA. Activation of the Akt/protein kinase B signaling pathway is associated with granulosa cell survival. Biol Reprod. 2001;64:1566–74.

    Article  CAS  PubMed  Google Scholar 

  122. Peter AT, Dhanasekaran N. Apoptosis of granulosa cells: a review on the role of MAPK-signalling modules. Reprod Domest Anim. 2003;38:209–13.

    Article  CAS  PubMed  Google Scholar 

  123. Gebauer G, Peter AT, Onesime D, Dhanasekaran N. Apoptosis of ovarian granulosa cells: Correlation with the reduced activity of ERK-signaling module. J Cell Biochem. 1999;75:547–54.

    Article  CAS  PubMed  Google Scholar 

  124. Shiota M, Sugai N, Tamura M, Yamaguchi R, Fukushima N, Miyano T, et al. Correlation of mitogen-activated protein kinase activities with cell survival and apoptosis in porcine granulosa cells. Zool Sci. 2003;20:193–201.

    Article  CAS  Google Scholar 

  125. Boostanfar R, Jain JK, Mishell DR, Paulson RJ. A prospective randomized trial comparing clomiphene citrate with tamoxifen citrate for ovulation induction. Fertil Steril. 2001;75:1024–6.

    Article  CAS  PubMed  Google Scholar 

  126. Kettel LM, Roseff SJ, Berga SL, Mortola JF, Yen SSC. Hypothalamic-pituitary-ovarian response to clomiphene citrate in women with polycystic ovary syndrome. Fertil Steril. 1993;59:532–8.

    Article  CAS  PubMed  Google Scholar 

  127. Zeleznik AJ, Hutchison JS, Schuler HM. Passive immunization with anti-oestradiol antibodies during the luteal phase of the menstrual cycle potentiates the perimenstrual rise in serum gonadotrophin concentrations and stimulates follicular growth in the cynomolgus monkey (Macaca fascicularis). J Reprod Fertil. 1987;80:403–10.

    Article  CAS  PubMed  Google Scholar 

  128. Robker RL, Richards JS. Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol. 1998;12:924–40.

    Article  CAS  PubMed  Google Scholar 

  129. Liu W, Xin Q, Wang X, Wang S, Wang H, Zhang W, et al. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals. Cell Death Dis. 2017;8:e2662.

  130. Findlay JK, Kerr JB, Britt K, Liew SH, Simpson ER, Rosairo D, et al. Ovarian physiology: follicle development, oocyte and hormone relationships. Anim Reprod . Colégio Brasileiro de Reprodução Animal. 2018;6:16–9.

    Google Scholar 

  131. Richards JAS, Russell DL, Robker RL, Dajee M, Alliston TN. Molecular mechanisms of ovulation and luteinization. Mol Cell Endocrinol. 1998;145:47–54.

    Article  CAS  PubMed  Google Scholar 

  132. Barton M, Filardo EJ, Lolait SJ, Thomas P, Maggiolini M, Prossnitz ER. Twenty years of the G protein-coupled estrogen receptor GPER: historical and personal perspectives. J Steroid Biochem Mol Biol. 2018;176:4–15.

    Article  CAS  PubMed  Google Scholar 

  133. Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel RJ. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics. 1997;45:607–17.

    Article  CAS  PubMed  Google Scholar 

  134. Heublein S, Mayr D, Friese K, Jarrin-Franco MC, Lenhard M, Mayerhofer A, et al. The G-protein-coupled estrogen receptor (GPER/GPR30) in ovarian granulosa cell tumors. Int J Mol Sci. 2014;15:15161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Han N, Heublein S, Jeschke U, Kuhn C, Hester A, Czogalla B, et al. The G-protein-coupled estrogen receptor (GPER) regulates trimethylation of histone H3 at lysine 4 and represses migration and proliferation of ovarian cancer cells in vitro. Cells. 2021;10:1–23.

    Google Scholar 

  136. Czogalla B, Partenheimer A, Jeschke U, von Schönfeldt V, Mayr D, Mahner S, et al. β-arrestin 2 is a prognostic factor for survival of ovarian cancer patients upregulating cell proliferation. Front Endocrinol (Lausanne). 2020;11:554733.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Broselid S, Berg KA, Chavera TA, Kahn R, Clarke WP, Olde B, et al. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production. J Biol Chem. 2014;289:22117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Prodromidou A, Anagnostou E, Mavrogianni D, Liokari E, Dimitroulia E, Drakakis P, et al. Past, present, and future of gonadotropin use in controlled ovarian stimulation during assisted reproductive techniques. Cureus. 2021;13:e15663.

  139. Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26:1616–24.

    Article  CAS  PubMed  Google Scholar 

  140. Polyzos NP, Sunkara SK. Sub-optimal responders following controlled ovarian stimulation: an overlooked group? Hum Reprod. 2015;30:2005–8.

    Article  CAS  PubMed  Google Scholar 

  141. Heublein S, Mayr D, Vrekoussis T, Friese K, Hofmann SS, Jeschke U, et al. The G-protein coupled estrogen receptor (GPER/GPR30) is a gonadotropin receptor dependent positive prognosticator in ovarian carcinoma patients. PLoS One. 2013;8:e71791.

  142. Roy N, Mascolo E, Lazzaretti C, Paradiso E, D’Alessandro S, Zaręba K, et al. Endocrine disruption of the follicle-stimulating hormone receptor signaling during the human antral follicle growth. Front Endocrinol (Lausanne). 2021;12:791763.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lyga S, Volpe S, Werthmann RC, Götz K, Sungkaworn T, Lohse MJ, et al. Persistent cAMP signaling by internalized LH receptors in ovarian follicles. Endocrinology. 2016;157:1613–21.

    CAS  PubMed  Google Scholar 

  144. Santi D, Casarini L, Alviggi C, Simoni M. Efficacy of follicle-stimulating hormone (FSH) alone, FSH + luteinizing hormone, human menopausal gonadotropin or FSH + human chorionic gonadotropin on assisted reproductive technology outcomes in the “personalized” medicine era: a meta-analysis. Front Endocrinol (Lausanne). 2017;8:114.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to MUR for supporting the Department of Biomedical, Metabolic, and Neural Sciences (University of Modena and Reggio Emilia, Italy) in the context of the Departments of Excellence Programme. KZ and AGG were supported by a Trialect Corporation’s fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livio Casarini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casarini, L., Paradiso, E., Lazzaretti, C. et al. Regulation of antral follicular growth by an interplay between gonadotropins and their receptors. J Assist Reprod Genet 39, 893–904 (2022). https://doi.org/10.1007/s10815-022-02456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02456-6

Keywords

Navigation