Skip to main content

Advertisement

Log in

Epigenetic effect of putrescine supplementation during in vitro maturation of oocytes on offspring in mice

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the epigenetic safety of putrescine supplementation during in vitro maturation (IVM) to offspring.

Methods

Germinal vesicle oocytes retrieved from 12-week-old mice were randomly divided into two groups and cultured in IVM medium with or without 1 mmol/L putrescine for 16 h. Then, in vitro fertilization and embryo transplantation were conducted to produce the F1 offspring. The F1 mated with ordinary mice and bred the F2 offspring. The DNA methylation patterns in the brain and heart of F1 were investigated by reduced representation bisulfite sequencing. Imprinted gene expression levels of F1 oocytes were tested. The global methylation of F2 was examined by dot blot.

Results

The weight, organ coefficient, and histology were normal in the F1 and F2 offspring from the putrescine-treated oocytes. An overall methylation level of 31.23 to 32.53% was observed for all CpG sites in the brain and heart of the two groups. The DNA methylation patterns of the brain and heart in F1 were not altered in general, with subtle differences. The expression levels of imprinted genes including H19, Snrpn, Peg3, Igf2, and Igf2r did not statistically change. The global 5mC level of F2 was consistent with the control group.

Conclusion

Putrescine supplementation during IVM did not directly affect the development, health, and reproduction, and did not affect the genome and global epigenetics of mouse offspring derived from those oocytes. The transient putrescine treatment for improving oocyte maturation shows its long-term safety of genome and epigenetics in the offspring of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data underlying this article will be shared at reasonable request to the corresponding author.

Code availability

Not applicable.

References

  1. Carson SA, Kallen AN. Diagnosis and management of infertility: a review. JAMA. 2021;326(1):65–76. https://doi.org/10.1001/jama.2021.4788.

    Article  CAS  PubMed  Google Scholar 

  2. Siristatidis CS, Maheshwari A, Vaidakis D, Bhattacharya S. In vitro maturation in subfertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database Syst Rev. 2018;11:CD006606. https://doi.org/10.1002/14651858.CD006606.pub4.

    Article  PubMed  Google Scholar 

  3. De Geyter C, Calhaz-Jorge C, Kupka MS, Wyns C, Mocanu E, Motrenko T, et al. ART in Europe, 2014: results generated from European registries by ESHRE: the European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod. 2018;33(9):1586–601. https://doi.org/10.1093/humrep/dey242.

    Article  PubMed  Google Scholar 

  4. Ferreira EM, Vireque AA, Adona PR, Ferriani RA, Navarro PA. Prematuration of bovine oocytes with butyrolactone I reversibly arrests meiosis without increasing meiotic abnormalities after in vitro maturation. Eur J Obstet Gynecol Reprod Biol. 2009;145(1):76–80. https://doi.org/10.1016/j.ejogrb.2009.03.016.

    Article  CAS  PubMed  Google Scholar 

  5. Zou H, Chen B, Ding D, Gao M, Chen D, Liu Y, et al. Melatonin promotes the development of immature oocytes from the COH cycle into healthy offspring by protecting mitochondrial function. J Pineal Res. 2020;68(1):e12621. https://doi.org/10.1111/jpi.12621.

    Article  CAS  PubMed  Google Scholar 

  6. Yin Z, Sun JT, Cui HD, Jiang CQ, Zhang YT, Lee S, et al. Tannin supplementation improves oocyte cytoplasmic maturation and subsequent embryo development in pigs. Antioxidants (Basel). 2021;10(10):1594. https://doi.org/10.3390/antiox10101594.

  7. Cao Y, Zhao H, Wang Z, Zhang C, Bian Y, Liu X, et al. Quercetin promotes in vitro maturation of oocytes from humans and aged mice. Cell Death Dis. 2020;11(11):965. https://doi.org/10.1038/s41419-020-03183-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu MJ, Sun AG, Zhao SG, Liu H, Ma SY, Li M, et al. Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertil Steril. 2018;109(5):900–7. https://doi.org/10.1016/j.fertnstert.2018.01.020.

    Article  CAS  PubMed  Google Scholar 

  9. Hussain T, Tan B, Ren W, Rahu N, Kalhoro DH, Yin Y. Exploring polyamines: functions in embryo/fetal development. Anim Nutr. 2017;3(1):7–10. https://doi.org/10.1016/j.aninu.2016.12.002.

    Article  PubMed  Google Scholar 

  10. Tao Y, Liu D, Mo G, Wang H, Liu XJ. Peri-ovulatory putrescine supplementation reduces embryo resorption in older mice. Hum Reprod. 2015;30(8):1867–75. https://doi.org/10.1093/humrep/dev130.

    Article  CAS  PubMed  Google Scholar 

  11. Liu XJ, Tao Y. Peri-ovulatory putrescine to reduce aneuploid conceptions. Aging (Albany NY). 2012;4(11):723–5. https://doi.org/10.18632/aging.100500.

    Article  CAS  Google Scholar 

  12. Tao Y, Tartia A, Lawson M, Zelinski MB, Wu W, Liu JY, et al. Can peri-ovulatory putrescine supplementation improve egg quality in older infertile women? J Assist Reprod Genet. 2019;36(3):395–402. https://doi.org/10.1007/s10815-018-1327-x.

    Article  PubMed  Google Scholar 

  13. Liu D, Mo G, Tao Y, Wang H, Liu XJ. Putrescine supplementation during in vitro maturation of aged mouse oocytes improves the quality of blastocysts. Reprod Fertil Dev. 2017;29(7):1392–400. https://doi.org/10.1071/RD16061.

    Article  CAS  PubMed  Google Scholar 

  14. Hu M, Ma W, Xu W, Wu W, Yan Z, Liu J, et al. Putrescine improves oocyte quality of aging mice and its mechanism. J Reprod Med (in Chinese). 2019;28(4):372–9. https://doi.org/10.3969/j.issn.1004-3845.2019.04.009.

    Article  Google Scholar 

  15. Xu W, Li L, Sun J, Zhu S, Yan Z, Gao L, et al. Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity. Aging (Albany NY). 2018;10(12):4093–106. https://doi.org/10.18632/aging.101699.

    Article  CAS  PubMed Central  Google Scholar 

  16. Kito S, Ohta Y. Medium effects on capacitation and sperm penetration through the zona pellucida in inbred BALB/c spermatozoa. Zygote. 2005;13(2):145–53. https://doi.org/10.1017/s0967199405003205.

    Article  CAS  PubMed  Google Scholar 

  17. Navarrete FA, Garcia-Vazquez FA, Alvau A, Escoffier J, Krapf D, Sanchez-Cardenas C, et al. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J Cell Physiol. 2015;230(8):1758–69. https://doi.org/10.1002/jcp.24873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Yan Z, Liu H, Li L, Yuan C, Qin L, et al. Sorbitol accumulation decreases oocyte quality in aged mice by altering the intracellular redox balance. Aging (Albany NY). 2021;13(23):25291–303. https://doi.org/10.18632/aging.203747.

    Article  Google Scholar 

  19. Li Q, Li Y, Yin Q, Huang S, Wang K, Zhuo L, et al. Temporal regulation of prenatal embryonic development by paternal imprinted loci. Sci China Life Sci. 2020;63(1):1–17. https://doi.org/10.1007/s11427-019-9817-6.

    Article  PubMed  Google Scholar 

  20. Kindsfather AJ, Czekalski MA, Pressimone CA, Erisman MP, Mann MRW. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos. Clin Epigenetics. 2019;11(1):162. https://doi.org/10.1186/s13148-019-0751-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He QL, Wei XY, Han XY, Zhou Q, Wang HQ, Ding NZ, et al. Effects of 2,3’,4,4’5-pentachlorobiphenyl exposure during pregnancy on epigenetic imprinting and maturation of offspring’s oocytes in mice. Arch Toxicol. 2019;93(9):2575–92. https://doi.org/10.1007/s00204-019-02529-z.

    Article  CAS  PubMed  Google Scholar 

  22. Filatov MA, Nikishin DA, Khramova YV, Semenova ML. Reference genes selection for real-time quantitative PCR analysis in mouse germinal vesicle oocytes. Zygote. 2019;27(6):392–7. https://doi.org/10.1017/S0967199419000492.

    Article  CAS  PubMed  Google Scholar 

  23. Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012;148(4):816–31. https://doi.org/10.1016/j.cell.2011.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee ST, Muench MO, Fomin ME, Xiao J, Zhou M, de Smith A, et al. Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures. Nucleic Acids Res. 2015;43(5):2590–602. https://doi.org/10.1093/nar/gkv103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Konczal M, Koteja P, Stuglik MT, Radwan J, Babik W. Accuracy of allele frequency estimation using pooled RNA-Seq. Mol Ecol Resour. 2014;14(2):381–92. https://doi.org/10.1111/1755-0998.12186.

    Article  CAS  PubMed  Google Scholar 

  26. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2. https://doi.org/10.1093/bioinformatics/btr167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42(8):e69. https://doi.org/10.1093/nar/gku154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu H, Xu T, Feng H, Chen L, Li B, Yao B, et al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015;43(21):e141. https://doi.org/10.1093/nar/gkv715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park Y, Wu H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics. 2016;32(10):1446–53. https://doi.org/10.1093/bioinformatics/btw026.

    Article  CAS  PubMed  Google Scholar 

  31. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–93. https://doi.org/10.1093/bioinformatics/bti430.

    Article  CAS  PubMed  Google Scholar 

  33. Chen S, Liu S, Mi S, Li W, Zhang S, Ding X, et al. Comparative analyses of sperm DNA methylomes among three commercial pig breeds reveal vital hypomethylated regions associated with spermatogenesis and embryonic development. Front Genet. 2021;12:740036. https://doi.org/10.3389/fgene.2021.740036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ventura-Junca P, Irarrazaval I, Rolle AJ, Gutierrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res. 2015;48:68. https://doi.org/10.1186/s40659-015-0059-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uk A, Collardeau-Frachon S, Scanvion Q, Michon L, Amar E. Assisted reproductive technologies and imprinting disorders: results of a study from a French congenital malformations registry. Eur J Med Genet. 2018;61(9):518–23. https://doi.org/10.1016/j.ejmg.2018.05.017.

    Article  PubMed  Google Scholar 

  36. Benelli M, Franceschini GM, Magi A, Romagnoli D, Biagioni C, Migliaccio I, et al. Charting differentially methylated regions in cancer with Rocker-meth. Commun Biol. 2021;4(1):1249. https://doi.org/10.1038/s42003-021-02761-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jang HS, Chen Y, Ge J, Wilkening AN, Hou Y, Lee HJ, et al. Epigenetic dynamics shaping melanophore and iridophore cell fate in zebrafish. Genome Biol. 2021;22(1):282. https://doi.org/10.1186/s13059-021-02493-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 2014;28(19):2103–19. https://doi.org/10.1101/gad.248005.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia-Dominguez X, Diretto G, Penaranda DS, Frusciante S, Garcia-Carpintero V, Canizares J, et al. Early embryo exposure to assisted reproductive manipulation induced subtle changes in liver epigenetics with no apparent negative health consequences in rabbit. Int J Mol Sci. 2021;22(18):9716. https://doi.org/10.3390/ijms22189716.

Download references

Acknowledgements

We thank Drs. Lingbo Cai and Yanqiu Hu at the Embryo Laboratory of our Center for their valuable help in the evaluation of oocyte quality and development potential, and Drs Lianju Qian and Chuyu Li in the cell culture.

Funding

This study was supported by grants from the National Nature and Science Foundation of China (81730041, 82171593) and the National Key Research and Development Program of China (2017YFC1001602, 2017YFC1001301).

Author information

Authors and Affiliations

Authors

Contributions

Shi C., a graduate student of Professor Cui Y, performed the main experiments and wrote the first draft of the manuscript. Zhang J. and Yan Z. mainly helped in the embryonic experiments, Gao L. participated in the animal work, and Gao C. helped in the confocal and fluorescence work. Yan Z., Gao C., and Gao L. are technicians in Prof. Cui Lab. Wu W. participated in the putrescine analysis. Liu J. participated in the design and discussion of the manuscript. Cui Y. mainly designed the study, provided project funding, and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yugui Cui.

Ethics declarations

Ethics approval and consent to participate

All animal procedures and experiments were performed in accordance with the guidelines for animal care. The design and protocol of animal experiments were approved by the Animal Care Committee of Nanjing Medical University.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Zhang, J., Yan, Z. et al. Epigenetic effect of putrescine supplementation during in vitro maturation of oocytes on offspring in mice. J Assist Reprod Genet 39, 681–694 (2022). https://doi.org/10.1007/s10815-022-02448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02448-6

Keywords

Navigation