Skip to main content
Log in

Molecular tools for the genomic assessment of oocyte’s reproductive competence

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

The most important factor associated with oocytes’ developmental competence has been widely identified as the presence of chromosomal abnormalities. However, growing application of genome-wide sequencing (GS) in population diagnostics has enabled the identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting IVF outcomes and reproductive fitness. Indeed, GS analysis in families with history of isolated infertility has recently led to the discovery of new genes and variants involved in specific human infertility endophenotypes that impact the availability and the functionality of female gametes by altering unique mechanisms necessary for oocyte maturation and early embryo development. Ongoing advancements in analytical and bioinformatic pipelines for the study of the genetic determinants of oocyte competence may provide the biological evidence required not only for improving the diagnosis of isolated female infertility but also for the development of novel preventive and therapeutic approaches for reproductive failure. Here, we provide an updated discussion and review of the progresses made in preconception genomic medicine in the identification of genetic factors associated with oocyte availability, function, and competence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharlip ID, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82. https://doi.org/10.1016/S0015-0282(02)03105-9.

    Article  PubMed  Google Scholar 

  2. Zegers-Hochschild F, et al. The international glossary on infertility and fertility care, 2017. Fertil Steril. 2017;108(3):393–406. https://doi.org/10.1016/J.FERTNSTERT.2017.06.005.

    Article  PubMed  Google Scholar 

  3. Beke A. Genetic causes of female infertility. Exp Suppl. 2019;111:367–83. https://doi.org/10.1007/978-3-030-25905-1_17.

    Article  CAS  PubMed  Google Scholar 

  4. Sadeghi MR. Unexplained infertility, the controversial matter in management of infertile couples. J Reprod Infertil. 2015;16(1):1–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tilly JL, Sinclair DA. Germline energetics, aging, and female infertility. Cell Metab. 2013;17(6):838–50. https://doi.org/10.1016/J.CMET.2013.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018;24(3):245–66. https://doi.org/10.1093/HUMUPD/DMX040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mallepaly R, Butler PR, Herati AS, Lamb DJ. Genetic basis of male and female infertility. Monogr Hum Genet. 2017;21:1–16. https://doi.org/10.1159/000477275.

    Article  Google Scholar 

  8. Azziz R, et al. Polycystic ovary syndrome. Nat Rev Dis Primer. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57.

    Article  Google Scholar 

  9. Palomba S, Daolio J, La Sala GB. Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol Metab TEM. 2017;28(3):186–98. https://doi.org/10.1016/j.tem.2016.11.008.

    Article  CAS  PubMed  Google Scholar 

  10. Adamson GD, Tabangin M, Macaluso M, de Mouzon J. The number of babies born globally after treatment with the assisted reproductive technologies (ART). Fertil Steril. 2013;100(3):S42. https://doi.org/10.1016/j.fertnstert.2013.07.1807.

    Article  Google Scholar 

  11. Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26. https://doi.org/10.1093/HUMUPD/DMV016.

    Article  PubMed  Google Scholar 

  12. Rudak E, Dor J, Kimchi M, Goldman B, Levran D, Mashiach S. Anomalies of human oocytes from infertile women undergoing treatment by in vitro fertilization. Fertil Steril. 1990;54(2):292–6. https://doi.org/10.1016/S0015-0282(16)53706-6.

    Article  CAS  PubMed  Google Scholar 

  13. Eichenlaub-ritter U, Schmiady H, Kentenich H, Soewarto D. Fertilization and early embryology: recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod. 1995;10(9):2343–9. https://doi.org/10.1093/OXFORDJOURNALS.HUMREP.A136297.

    Article  CAS  PubMed  Google Scholar 

  14. Schmiady H, Neitzel H. Arrest of human oocytes during meiosis I in two sisters of consanguineous parents: first evidence for an autosomal recessive trait in human infertility: case report. Hum Reprod. 2002;17(10):2556–9. https://doi.org/10.1093/HUMREP/17.10.2556.

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet. 2016;99(3):744–52. https://doi.org/10.1016/J.AJHG.2016.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sang Q, et al. Homozygous mutations in WEE2 cause fertilization failure and female infertility. Am J Hum Genet. 2018;102(4):649–57. https://doi.org/10.1016/J.AJHG.2018.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiang J, et al. Human oocyte maturation arrest caused by a novel missense mutation in TUBB8. J Int Med Res. 2018;46(9):3759–64. https://doi.org/10.1177/0300060518778638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nat 1953 1714356. 1953;171(4356):737–8. https://doi.org/10.1038/171737a0.

    Article  CAS  Google Scholar 

  19. Chiu FPC, Doolan BJ, McGrath JA, Onoufriadis A. A decade of next-generation sequencing in genodermatoses: the impact on gene discovery and clinical diagnostics*. Br J Dermatol. 2021;184(4):606–16. https://doi.org/10.1111/BJD.19384.

    Article  CAS  PubMed  Google Scholar 

  20. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3). https://doi.org/10.1016/0022-2836(75)90213-2.

  21. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7. https://doi.org/10.1073/PNAS.74.12.5463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. https://doi.org/10.1016/S0076-6879(80)65059-9.

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:11. https://doi.org/10.1155/2012/251364.

    Article  Google Scholar 

  24. Normand EA, et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018;10(1). https://doi.org/10.1186/S13073-018-0582-X.

  25. Neveling K, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34(12):1721–6. https://doi.org/10.1002/HUMU.22450.

    Article  CAS  PubMed  Google Scholar 

  26. Gassner C. Next-generation sequencing in blood group genomics: state of the art and perspectives. Transfus Med Hemotherapy. 2020;47(1):2. https://doi.org/10.1159/000505463.

    Article  Google Scholar 

  27. Ballard D, Winkler-Galicki J, Wesoły J. Massive parallel sequencing in forensics: advantages, issues, technicalities, and prospects. Int J Legal Med. 2020;134(4):1291–303. https://doi.org/10.1007/S00414-020-02294-0.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Poduri A, Sheidley BR, Shostak S, Ottman R. Genetic testing in the epilepsies-developments and dilemmas. Nat Rev Neurol. 2014;10(5):293–9. https://doi.org/10.1038/NRNEUROL.2014.60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Farwell KD, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med Off J Am Coll Med Genet. 2015;17(7):578–86. https://doi.org/10.1038/GIM.2014.154.

    Article  CAS  Google Scholar 

  30. Lee S, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91(2):224–37. https://doi.org/10.1016/J.AJHG.2012.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo T, et al. An effective combination of whole-exome sequencing and runs of homozygosity for the diagnosis of primary ciliary dyskinesia in consanguineous families. Sci Rep. 2017;7(1):1–7. https://doi.org/10.1038/s41598-017-08510-z.

    Article  CAS  Google Scholar 

  32. Ross JP, Dion PA, Rouleau GA. Exome sequencing in genetic disease: recent advances and considerations. FResearch. 2020;9:F1000 Faculty Rev-336. https://doi.org/10.12688/f1000research.19444.1.

  33. Abel HJ, et al. Mapping and characterization of structural variation in 17,795 human genomes. Nat 2020 5837814. 2020;583(7814):83–9. https://doi.org/10.1038/s41586-020-2371-0.

    Article  CAS  Google Scholar 

  34. Boycott KM, et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet. 2017;100(5):695. https://doi.org/10.1016/J.AJHG.2017.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gruhn JR, et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science. 2019;365(6460):1466–9. https://doi.org/10.1126/SCIENCE.AAV7321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Capalbo A, Hoffmann ER, Cimadomo D, Ubaldi FM, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23(6):706–22. https://doi.org/10.1093/humupd/dmx026.

    Article  CAS  PubMed  Google Scholar 

  37. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493–504. https://doi.org/10.1038/NRG3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lister LM, et al. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr Biol CB. 2010;20(17):1511–21. https://doi.org/10.1016/J.CUB.2010.08.023.

    Article  CAS  PubMed  Google Scholar 

  39. Patel J, Tan SL, Hartshorne GM, McAinsh AD. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities. Biol Open. 2016;5(2):178–84. https://doi.org/10.1242/BIO.016394/-/DC1.

    Article  PubMed Central  Google Scholar 

  40. Duncan FE, Hornick JE, Lampson MA, Schultz RM, Shea LD, Woodruff TK. Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell. 2012;11(6):1121. https://doi.org/10.1111/J.1474-9726.2012.00866.X.

    Article  CAS  PubMed  Google Scholar 

  41. Franasiak JM, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3). https://doi.org/10.1016/J.FERTNSTERT.2013.11.004.

  42. McCoy RC, et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 2015;11(10). https://doi.org/10.1371/JOURNAL.PGEN.1005601.

  43. Zickler D, Kleckner N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol. 2015;7(6):1–28. https://doi.org/10.1101/CSHPERSPECT.A016626.

    Article  CAS  Google Scholar 

  44. Handel MA, Schimenti JC. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet. 2010;11(2):124–36. https://doi.org/10.1038/NRG2723.

    Article  CAS  PubMed  Google Scholar 

  45. Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol. 2002;14(1):25–34. https://doi.org/10.1016/s0955-0674(01)00290-3.

    Article  CAS  PubMed  Google Scholar 

  46. Sathananthan AH, Ng SC, Chia CM, Law HY, Edirisinghe WR, Ratnam SS. The Origin and distribution of cortical granules in human oocytes with reference to Golgi, nucleolar, and microfilament activity. Ann N Y Acad Sci. 1985;442(1):251–64. https://doi.org/10.1111/j.1749-6632.1985.tb37526.x.

    Article  CAS  PubMed  Google Scholar 

  47. Holubcová Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348(6239):1143–7. https://doi.org/10.1126/science.aaa9529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lara-Gonzalez P, Westhorpe FG, Taylor SS. The spindle assembly checkpoint. Curr Biol. 2012;22(22):R966–80. https://doi.org/10.1016/j.cub.2012.10.006.

    Article  CAS  PubMed  Google Scholar 

  49. Rieder CL, Cole RW, Khodjakov A, Sluder G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol. 1995;130(4):941–8. https://doi.org/10.1083/jcb.130.4.941.

    Article  CAS  PubMed  Google Scholar 

  50. Rémillard-Labrosse G, et al. Human oocytes harboring damaged DNA can complete meiosis I. Fertil Steril. 2020;113(5):1080-1089.e2. https://doi.org/10.1016/j.fertnstert.2019.12.029.

    Article  CAS  PubMed  Google Scholar 

  51. Caburet S, et al. Mutant cohesin in premature ovarian failure. N Engl J Med. 2014;370(10):943–9. https://doi.org/10.1056/NEJMOA1309635/SUPPL_FILE/NEJMOA1309635_DISCLOSURES.PDF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faridi R, et al. Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome. Clin Genet. 2017;91(2):328–32. https://doi.org/10.1111/CGE.12867.

    Article  CAS  PubMed  Google Scholar 

  53. Tyc KM, et al. Exome sequencing links CEP120 mutation to maternally derived aneuploid conception risk. Hum Reprod Oxf Engl. 2020;35(9):2134–48. https://doi.org/10.1093/HUMREP/DEAA148.

    Article  CAS  Google Scholar 

  54. Sang Q, et al. A pannexin 1 channelopathy causes human oocyte death. Sci Transl Med. 2019;11:(485). https://doi.org/10.1126/SCITRANSLMED.AAV8731/SUPPL_FILE/AAV8731_SM.PDF.

  55. Baranova A, et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics. 2004;83(4):706–16. https://doi.org/10.1016/J.YGENO.2003.09.025.

    Article  CAS  PubMed  Google Scholar 

  56. Wang W, et al. Homozygous variants in PANX1 cause human oocyte death and female infertility. Eur J Hum Genet 2021 299. 2021;29(9):1396–404. https://doi.org/10.1038/s41431-020-00807-4.

    Article  CAS  Google Scholar 

  57. Maddirevula S, et al. Female infertility caused by mutations in the oocyte-specific translational repressor PATL2. Am J Hum Genet. 2017;101(4):603–8. https://doi.org/10.1016/j.ajhg.2017.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen B, et al. Biallelic Mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am J Hum Genet. 2017;101(4):609–15. https://doi.org/10.1016/J.AJHG.2017.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christou-Kent M, et al. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol Med. 2018;10(5). https://doi.org/10.15252/EMMM.201708515.

  60. Hartshorne G, Montgomery S, Klentzeris L. A case of failed oocyte maturation in vivo and in vitro. Fertil Steril. 1999;71(3):567–70. https://doi.org/10.1016/S0015-0282(98)00505-6.

    Article  CAS  PubMed  Google Scholar 

  61. Feng R, et al. Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos. J Med Genet. 2016;53(10):662. https://doi.org/10.1136/JMEDGENET-2016-103891.

    Article  CAS  PubMed  Google Scholar 

  62. Chen B, et al. The comprehensive mutational and phenotypic spectrum of TUBB8 in female infertility. Eur J Hum Genet. 2019;27(2):300. https://doi.org/10.1038/S41431-018-0283-3.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao L, et al. Identification novel mutations in TUBB8 in female infertility and a novel phenotype of large polar body in oocytes with TUBB8 mutations. J Assist Reprod Genet. 2020;37(8):1837–47. https://doi.org/10.1007/s10815-020-01830-6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang P, et al. Mutation analysis of tubulin beta 8 class VIII in infertile females with oocyte or embryonic defects. Clin Genet. 2021;99(1):208–14. https://doi.org/10.1111/CGE.13855.

    Article  CAS  PubMed  Google Scholar 

  65. Sha Q, et al. Novel mutations in TUBB8 expand the mutational and phenotypic spectrum of patients with zygotes containing multiple pronuclei. Gene. 2021;769:145227. https://doi.org/10.1016/j.gene.2020.145227.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Z, et al. Bi-allelic missense pathogenic variants in TRIP13 cause female infertility characterized by oocyte maturation arrest. Am J Hum Genet. 2020;107(1):15. https://doi.org/10.1016/J.AJHG.2020.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang P, et al. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum Reprod Oxf Engl. 2021;36(7):2011–9. https://doi.org/10.1093/HUMREP/DEAB094.

    Article  Google Scholar 

  68. Gupta SK. Human zona pellucida glycoproteins: binding characteristics with human spermatozoa and induction of acrosome reaction. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/FCELL.2021.619868.

  69. Abou-Haila A, Bendahmane M, Tulsiani DR. Significance of egg’s zona pellucida glycoproteins in sperm-egg interaction and fertilization. Minerva Ginecol. 2014;66(4):409–19.

    CAS  PubMed  Google Scholar 

  70. Okutman Ö, et al. Homozygous splice site mutation in ZP1 causes familial oocyte maturation defect. Genes. 2020;11(4). https://doi.org/10.3390/GENES11040382.

  71. Dai C, et al. ZP1 mutations are associated with empty follicle syndrome: evidence for the existence of an intact oocyte and a zona pellucida in follicles up to the early antral stage. A case report. Hum Reprod. 2019;34(11):2201–7. https://doi.org/10.1093/humrep/dez174.

    Article  PubMed  Google Scholar 

  72. Chen T, et al. A recurrent missense mutation in ZP3 causes empty follicle syndrome and female infertility. 2017. https://doi.org/10.1016/j.ajhg.2017.08.001.

  73. Dai C, et al. ZP2 pathogenic variants cause in vitro fertilization failure and female infertility. Genet Med Off J Am Coll Med Genet. 2019;21(2):431–40. https://doi.org/10.1038/S41436-018-0064-Y.

    Article  CAS  Google Scholar 

  74. Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reprod Camb Engl. 2005;130(6):791–9. https://doi.org/10.1530/rep.1.00793.

    Article  CAS  Google Scholar 

  75. Ikawa M, et al. The putative chaperone calmegin is required for sperm fertility. Nature. 1997;387(6633):607–10. https://doi.org/10.1038/42484.

    Article  CAS  PubMed  Google Scholar 

  76. Bianchi E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508(7497):483–7. https://doi.org/10.1038/NATURE13203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Inoue A, Nakajima R, Nagata M, Aoki F. Contribution of the oocyte nucleus and cytoplasm to the determination of meiotic and developmental competence in mice. Hum Reprod. 2008;23(6):1377–84. https://doi.org/10.1093/HUMREP/DEN096.

    Article  CAS  PubMed  Google Scholar 

  78. Alazami AM, et al. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015;16(1). https://doi.org/10.1186/S13059-015-0792-0.

  79. Tian Y, et al. Novel compound heterozygous mutation in WEE2 is associated with fertilization failure: case report of an infertile woman and literature review. BMC Womens Health. 2020;20(1):1–6. https://doi.org/10.1186/S12905-020-01111-5/TABLES/3.

    Article  Google Scholar 

  80. Zhou X, et al. Novel compound heterozygous mutations in WEE2 causes female infertility and fertilization failure. J Assist Reprod Genet. 2019;36(9):1957–62. https://doi.org/10.1007/S10815-019-01553-3.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dai J, et al. New biallelic mutations in WEE2: expanding the spectrum of mutations that cause fertilization failure or poor fertilization. Fertil Steril. 2019;111:510–8. https://doi.org/10.1016/j.fertnstert.2018.11.013.

    Article  CAS  PubMed  Google Scholar 

  82. Zhao L, et al. Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embryonic development. Protein Cell. 2020;11(12):921–7. https://doi.org/10.1007/S13238-020-00756-0/FIGURES/2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang W, et al. Homozygous mutations in REC114 cause female infertility characterised by multiple pronuclei formation and early embryonic arrest. J Med Genet. 2020;57(3). https://doi.org/10.1136/JMEDGENET-2019-106379.

  84. Clift D, Schuh M. Re-starting life: fertilization and the transition from meiosis to mitosis. Nat Rev Mol Cell Biol. 2013;14(9):549. https://doi.org/10.1038/NRM3643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu C, et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat Struct Mol Biol. 2016;23(5):387–94. https://doi.org/10.1038/NSMB.3204.

    Article  CAS  PubMed  Google Scholar 

  86. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3(4):367–82. https://doi.org/10.1093/HUMUPD/3.4.367.

    Article  CAS  PubMed  Google Scholar 

  87. Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Dev Camb Engl. 2009;136(18):3033–42. https://doi.org/10.1242/DEV.033183.

    Article  CAS  Google Scholar 

  88. Tong ZB, et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet. 2000;26(3):267–8. https://doi.org/10.1038/81547.

    Article  CAS  PubMed  Google Scholar 

  89. Mahadevan S, Sathappan V, Utama B, Lorenzo I, Kaskar K, Veyver IBVD. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci Rep. 2017;7. https://doi.org/10.1038/SREP44667.

  90. Esposito G, et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol. 2007;273(1–2):25–31. https://doi.org/10.1016/J.MCE.2007.05.005.

    Article  CAS  PubMed  Google Scholar 

  91. Zheng P, Dean J. Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc Natl Acad Sci U S A. 2009;106(18):7473–8. https://doi.org/10.1073/PNAS.0900519106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao Z, et al. Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J Mol Cell Biol. 2018;10(1):74–88. https://doi.org/10.1093/JMCB/MJX035.

    Article  CAS  PubMed  Google Scholar 

  93. Yurttas P, et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Dev Camb Engl. 2008;135(15):2627–36. https://doi.org/10.1242/DEV.016329.

    Article  CAS  Google Scholar 

  94. Zhu K, et al. Identification of a human subcortical maternal complex. Mol Hum Reprod. 2015;21(4):320–9. https://doi.org/10.1093/MOLEHR/GAU116.

    Article  CAS  PubMed  Google Scholar 

  95. Tashiro F, et al. Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition. Genes Cells. 2010;15(8):813–28. https://doi.org/10.1111/J.1365-2443.2010.01420.X.

    Article  CAS  PubMed  Google Scholar 

  96. Yu XJ, et al. The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat Commun. 2014;5:4887. https://doi.org/10.1038/NCOMMS5887.

    Article  CAS  PubMed  Google Scholar 

  97. Qin D, et al. The subcortical maternal complex protein Nlrp4f is involved in cytoplasmic lattice formation and organelle distribution. Dev Camb Engl. 2019;146(20). https://doi.org/10.1242/DEV.183616.

  98. Lu X, Gao Z, Qin D, Li L. A maternal functional module in the mammalian oocyte-to-embryo transition. Trends Mol Med. 2017;23(11):1014–23. https://doi.org/10.1016/J.MOLMED.2017.09.004.

    Article  PubMed  Google Scholar 

  99. Lin J, et al. Expanding the genetic and phenotypic spectrum of female infertility caused by TLE6 mutations. J Assist Reprod Genet. 2020;37(2):437. https://doi.org/10.1007/S10815-019-01653-0.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhang M, et al. Identification of novel Biallelic TLE6 variants in female infertility with preimplantation embryonic lethality. Front Genet. 2021;12:894. https://doi.org/10.3389/FGENE.2021.666136/BIBTEX.

    Article  Google Scholar 

  101. Wang X, et al. Novel mutations in genes encoding subcortical maternal complex proteins may cause human embryonic developmental arrest. Reprod Biomed Online. 2018;36(6):698–704. https://doi.org/10.1016/J.RBMO.2018.03.009.

    Article  PubMed  Google Scholar 

  102. Xu Y, et al. A novel homozygous variant in NLRP5 is associate with human early embryonic arrest in a consanguineous Chinese family. Clin Genet. 2020;98(1):69–73. https://doi.org/10.1111/CGE.13744.

    Article  CAS  PubMed  Google Scholar 

  103. Mu J, et al. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J Med Genet. 2019;56(7):471–80. https://doi.org/10.1136/JMEDGENET-2018-105936.

    Article  CAS  PubMed  Google Scholar 

  104. Maddirevula S, et al. A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet. 2020;139(5):605–13. https://doi.org/10.1007/S00439-020-02143-5.

    Article  CAS  PubMed  Google Scholar 

  105. Ma Y, et al. A novel homozygous FBXO43 mutation associated with male infertility and teratozoospermia in a consanguineous Chinese family. Fertil Steril. 2019;111(5):909-917.e1. https://doi.org/10.1016/J.FERTNSTERT.2019.01.007.

    Article  PubMed  Google Scholar 

  106. Wang W, et al. FBXO43 variants in patients with female infertility characterized by early embryonic arrest. Hum Reprod. 2021;36(8):2392–402. https://doi.org/10.1093/HUMREP/DEAB131.

    Article  PubMed  Google Scholar 

  107. Titus S, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172). https://doi.org/10.1126/SCITRANSLMED.3004925.

  108. Yost S, et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat Genet. 2017;49(7):1148. https://doi.org/10.1038/NG.3883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Murdoch S, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300–2. https://doi.org/10.1038/NG1740.

    Article  CAS  PubMed  Google Scholar 

  110. Demond H, et al. A KHDC3L mutation resulting in recurrent hydatidiform mole causes genome-wide DNA methylation loss in oocytes and persistent imprinting defects post-fertilisation. Genome Med. 2019;11(1):1–14. https://doi.org/10.1186/S13073-019-0694-Y/FIGURES/3.

    Article  Google Scholar 

  111. Begemann M, et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet. 2018;55(7):497–504. https://doi.org/10.1136/JMEDGENET-2017-105190.

    Article  CAS  PubMed  Google Scholar 

  112. Cubellis MV, et al. Loss-of-function maternal-effect mutations of PADI6 are associated with familial and sporadic Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance. Clin Epigenetics. 2020;12(1). https://doi.org/10.1186/S13148-020-00925-2.

  113. Zheng W, et al. Homozygous mutations in BTG4 cause zygotic cleavage failure and female infertility. Am J Hum Genet. 2020;107(1):24. https://doi.org/10.1016/J.AJHG.2020.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhao L, et al. Identification of novel mutations in CDC20: expanding the mutational spectrum for female infertility. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/FCELL.2021.647130.

  115. Huang L, et al. Novel Mutations in CDC20 Are associated with female infertility due to oocyte maturation abnormality and early embryonic arrest. Reprod Sci Thousand Oaks Calif. 2021;28(7):1930–8. https://doi.org/10.1007/S43032-021-00524-3.

    Article  CAS  Google Scholar 

  116. Nguyen NMP, Slim R. Genetics and epigenetics of recurrent hydatidiform moles: basic science and genetic counselling. Curr Obstet Gynecol Rep. 2014;3(1):55–64. https://doi.org/10.1007/S13669-013-0076-1.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Meyer E, et al. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann syndrome). PLoS Genet. 2009;5(3):e1000423. https://doi.org/10.1371/journal.pgen.1000423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li M, Jia M, Zhao X, Shi R, Xue X. A new NLRP5 mutation causes female infertility and total fertilization failure. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2021;37(3):283–4. https://doi.org/10.1080/09513590.2020.1832069.

    Article  CAS  Google Scholar 

  119. Soellner L, Begemann M, Degenhardt F, Geipel A, Eggermann T, Mangold E. Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. Eur J Hum Genet. 2017;25(8):924. https://doi.org/10.1038/EJHG.2017.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Qian J, et al. Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur J Hum Genet EJHG. 2018;26(7):1007–13. https://doi.org/10.1038/S41431-018-0141-3.

    Article  CAS  PubMed  Google Scholar 

  121. Zheng W, et al. New biallelic mutations in PADI6 cause recurrent preimplantation embryonic arrest characterized by direct cleavage. J Assist Reprod Genet. 2020;37(1):205–12. https://doi.org/10.1007/S10815-019-01606-7.

    Article  PubMed  Google Scholar 

  122. Liu J, et al. Two novel mutations in PADI6 and TLE6 genes cause female infertility due to arrest in embryonic development. J Assist Reprod Genet. 2021;38(6):1551. https://doi.org/10.1007/S10815-021-02194-1.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Huang L, et al. Novel mutations in PATL2 cause female infertility with oocyte germinal vesicle arrest. Hum Reprod Oxf Engl. 2018;33(6):1183–90. https://doi.org/10.1093/HUMREP/DEY100.

    Article  CAS  Google Scholar 

  124. Wu L, et al. Novel mutations in PATL2: expanding the mutational spectrum and corresponding phenotypic variability associated with female infertility. J Hum Genet. 2019;64(5):379–85. https://doi.org/10.1038/S10038-019-0568-6.

    Article  CAS  PubMed  Google Scholar 

  125. Liu Z, et al. Novel homozygous mutations in PATL2 lead to female infertility with oocyte maturation arrest. J Assist Reprod Genet. 2020;37(4):841–7. https://doi.org/10.1007/s10815-020-01698-6.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cao Q, et al. The recurrent mutation in PATL2 inhibits its degradation thus causing female infertility characterized by oocyte maturation defect through regulation of the Mos-MAPK pathway. Front Cell Dev Biol. 2021;9:116. https://doi.org/10.3389/FCELL.2021.628649/BIBTEX.

    Article  Google Scholar 

  127. Nguyen NMP, et al. Causative mutations and mechanism of androgenetic hydatidiform moles. Am J Hum Genet. 2018;103(5):740–51. https://doi.org/10.1016/j.ajhg.2018.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. He WB, et al. A recurrent mutation in TBPL2 causes diminished ovarian reserve and female infertility. J Genet Genomics. 2020;47(12):785–8. https://doi.org/10.1016/J.JGG.2020.09.004.

    Article  PubMed  Google Scholar 

  129. Mao B, et al. A novel TLE6 mutation, c.541+1G>A, identified using whole-exome sequencing in a Chinese family with female infertility. Mol Genet Genomic Med. 2021;9(8):e1743. https://doi.org/10.1002/mgg3.1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen B, et al. Novel mutations and structural deletions in TUBB8: expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Hum Reprod Oxf Engl. 2017;32(2):457–64. https://doi.org/10.1093/humrep/dew322.

    Article  CAS  Google Scholar 

  131. Huang L, et al. Mutation analysis of the TUBB8 gene in nine infertile women with oocyte maturation arrest. Reprod Biomed Online. 2017;35(3):305–10. https://doi.org/10.1016/j.rbmo.2017.05.017.

    Article  CAS  PubMed  Google Scholar 

  132. Wang A-C, et al. Mutation analysis of the TUBB8 gene in primary infertile women with arrest in oocyte maturation. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2018;34(10):900–4. https://doi.org/10.1080/09513590.2018.1464138.

    Article  CAS  Google Scholar 

  133. Yuan P, et al. A novel mutation in the TUBB8 gene is associated with complete cleavage failure in fertilized eggs. J Assist Reprod Genet. 2018;35(7):1349–56. https://doi.org/10.1007/s10815-018-1188-3.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jia Y, et al. Identification and rescue of a novel TUBB8 mutation that causes the first mitotic division defects and infertility. J Assist Reprod Genet. 2020;37(11):2713–22. https://doi.org/10.1007/s10815-020-01945-w.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lanuza-López MC, et al. Oocyte maturation arrest produced by TUBB8 mutations: impact of genetic disorders in infertility treatment. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2020;36(9):829–34. https://doi.org/10.1080/09513590.2020.1725968.

    Article  CAS  Google Scholar 

  136. Xing Q, et al. Rare homozygous mutation in TUBB8 associated with oocyte maturation defect-2 in a consanguineous mating family. J Ovarian Res. 2020;13(1):42. https://doi.org/10.1186/s13048-020-00637-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cao T, et al. Two mutations in TUBB8 cause developmental arrest in human oocytes and early embryos. Reprod Biomed Online. 2021;43(5):891–8. https://doi.org/10.1016/j.rbmo.2021.07.020.

    Article  CAS  PubMed  Google Scholar 

  138. Liu Z, et al. TUBB8 mutations cause female infertility with large polar body oocyte and fertilization failure. Reprod Sci Thousand Oaks Calif. 2021;28(10):2942–50. https://doi.org/10.1007/s43032-021-00633-z.

    Article  CAS  Google Scholar 

  139. Zheng W, et al. The comprehensive variant and phenotypic spectrum of TUBB8 in female infertility. J Assist Reprod Genet. 2021;38(9):2261–72. https://doi.org/10.1007/s10815-021-02219-9.

    Article  PubMed  Google Scholar 

  140. Zheng W, et al. Expanding the phenotypic and genetic spectrum of TUBB8 in female infertility: suggestions for genetic counseling. Authorea, Inc. https://doi.org/10.22541/au.158540727.73039134.

  141. Lin SM, et al. Prenatal diagnosis and long-term follow-up of a Chinese patient with mosaic variegated aneuploidy and its molecular analysis. Clin Case Rep. 2020;8(8):1369–75. https://doi.org/10.1002/ccr3.2802.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Sang Q, et al. Homozygous mutations in WEE2 cause fertilization failure and female infertility. Am J Hum Genet. 2018;102(4):649–57. https://doi.org/10.1016/j.ajhg.2018.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang X, Shu L, Cai L, Sun X, Cui Y, Liu J. Homozygous missense mutation Arg207Cys in the WEE2 gene causes female infertility and fertilization failure. J Assist Reprod Genet. 2019;36(5):965–71. https://doi.org/10.1007/s10815-019-01418-9.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhang Z, et al. Novel mutations in WEE2: expanding the spectrum of mutations responsible for human fertilization failure. Clin Genet. 2019;95(4):520–4. https://doi.org/10.1111/cge.13505.

    Article  CAS  PubMed  Google Scholar 

  145. Jin J, et al. Novel WEE2 compound heterozygous mutations identified in patients with fertilization failure or poor fertilization. J Assist Reprod Genet. 2021;38(11):2861–9. https://doi.org/10.1007/S10815-021-02285-Z/FIGURES/3.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wang A, et al. Clinical exome sequencing identifies novel compound heterozygous mutations of the WEE2 gene in primary infertile women with fertilization failure. 2021. https://doi.org/10.1080/09513590.2021.1916458.

  147. Wang A, et al. Clinical exome sequencing identifies novel compound heterozygous mutations of the WEE2 gene in primary infertile women with fertilization failure. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2021;1–6. https://doi.org/10.1080/09513590.2021.1916458.

  148. Huang H-L, et al. Mutant ZP1 in familial infertility. N Engl J Med. 2014;370(13):1220–6. https://doi.org/10.1056/NEJMOA1308851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sun L, et al. Compound heterozygous ZP1 mutations cause empty follicle syndrome in infertile sisters. Hum Mutat. 2019;40(11):2001–6. https://doi.org/10.1002/humu.23864.

    Article  CAS  PubMed  Google Scholar 

  150. Yuan P, et al. Novel mutation in the ZP1 gene and clinical implications. J Assist Reprod Genet. 2019;36(4):741–7. https://doi.org/10.1007/s10815-019-01404-1.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhou Z, et al. Novel mutations in ZP1, ZP2, and ZP3 cause female infertility due to abnormal zona pellucida formation. Hum Genet. 2019;138(4):327–37. https://doi.org/10.1007/S00439-019-01990-1/FIGURES/5.

    Article  CAS  PubMed  Google Scholar 

  152. Cao Q, et al. Heterozygous mutations in ZP1 and ZP3 cause formation disorder of ZP and female infertility in human. J Cell Mol Med. 2020;24(15):8557. https://doi.org/10.1111/JCMM.15482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Luo G, et al. Novel mutations in ZP1 and ZP2 cause primary infertility due to empty follicle syndrome and abnormal zona pellucida. J Assist Reprod Genet. 2020;37(11):2853–60. https://doi.org/10.1007/S10815-020-01926-Z.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Xu Q, et al. A novel homozygous nonsense ZP1 variant causes human female infertility associated with empty follicle syndrome (EFS). Mol Genet Genomic Med. 2020;8(7):e1269. https://doi.org/10.1002/mgg3.1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu W, et al. Dosage effects of ZP2 and ZP3 heterozygous mutations cause human infertility. Hum Genet. 2017;136(8):975–85. https://doi.org/10.1007/S00439-017-1822-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Antonio Capalbo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picchetta, L., Caroselli, S., Figliuzzi, M. et al. Molecular tools for the genomic assessment of oocyte’s reproductive competence. J Assist Reprod Genet 39, 847–860 (2022). https://doi.org/10.1007/s10815-022-02411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02411-5

Keywords

Navigation