Skip to main content

Advertisement

Log in

Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Premature ovarian insufficiency (POI) is a heterogeneous disorder characterized by the cessation of menstrual cycles before the age of 40 years due to the depletion or dysfunction of the ovarian follicles. POI is a highly heterogeneous disease in terms of etiology. The aim of this study is to reveal the genetic etiology in POI patients.

Methods

A total of 35 patients (mean age: 27.2 years) from 28 different families diagnosed with POI were included in the study. Karyotype, FMR1 premutation analysis, single nucleotide polymorphism (SNP) array, and whole-exome sequencing (WES) were conducted to determine the genetic etiology of patients.

Results

A total of 35 patients with POI were first evaluated by karyotype analysis, and chromosomal anomaly was detected in three (8.5%) and FMR1 premutation was detected in six patients (17%) from two different families. A total of 29 patients without FMR1 premutation were included in the SNP array analysis, and one patient had a 337-kb deletion in the chromosome 6q26 region including PARK2 gene, which was thought to be associated with POI. Twenty-nine cases included in SNP array analysis were evaluated simultaneously with WES analysis, and genetic variant was detected in 55.1% (16/29).

Conclusion

In the present study, rare novel variants were identified in genes known to be associated with POI, which contribute to the mutation spectrum. The effects of detected novel genes and variations on different pathways such as gonadal development, meiosis and DNA repair, or metabolism need to be investigated by experimental studies. Molecular etiology allows accurate genetic counseling to the patient and family as well as fertility planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Committee opinion no. 605: primary ovarian insufficiency in adolescents and young women. Obstet Gynecol. 2014;124(1):193–7.

    Article  Google Scholar 

  2. Franić-Ivanišević M, Franić D, Ivović M, Tančić-Gajić M, Marina L, Barac M, Vujović S. Genetic etiology of primary premature ovarian insufficiency. Acta Clin Croat. 2016;55(4):629–35.

    Article  PubMed  Google Scholar 

  3. Golezar S, Ramezani Tehrani F, Khazaei S, Ebadi A, Keshavarz Z. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis. Climacteric. 2019;22(4):403–11.

    Article  CAS  PubMed  Google Scholar 

  4. European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, Cifkova R, de Muinck Keizer-Schrama S, Hogervorst E, Janse F, Liao L, Vlaisavljevic V, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–37.

  5. Simpson JL. Genetic and phenotypic heterogeneity in ovarian failure: overview of selected candidate genes. Ann N Y Acad Sci. 2008;1135:146–54.

    Article  PubMed  Google Scholar 

  6. Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiao X, Qin C, Li J, Qin Y, Gao X, Zhang B, Zhen X, Feng Y, Simpson JL, Chen ZJ. Cytogenetic analysis of 531 Chinese women with premature ovarian failure. Hum Reprod. 2012;27(7):2201–7.

    Article  CAS  PubMed  Google Scholar 

  8. Toniolo D. X-linked premature ovarian failure: a complex disease. Curr Opin Genet Dev. 2006;16(3):293–300.

    Article  CAS  PubMed  Google Scholar 

  9. Persani L, Rossetti R, Cacciatore C, Bonomi M. Primary Ovarian Insufficiency: X chromosome defects and autoimmunity. J Autoimmun. 2009;33(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  10. Rizzolio F, Bione S, Sala C, Goegan M, Gentile M, Gregato G, Rossi E, Pramparo T, Zuffardi O, Toniolo D. Chromosomal rearrangements in Xq and premature ovarian failure: mapping of 25 new cases and review of the literature. Hum Reprod. 2006;21(6):1477–83.

    Article  CAS  PubMed  Google Scholar 

  11. Rizzolio F, Sala C, Alboresi S, Bione S, Gilli S, Goegan M, Pramparo T, Zuffardi O, Toniolo D. Epigenetic control of the critical region for premature ovarian failure on autosomal genes translocated to the X chromosome: a hypothesis. Hum Genet. 2007;121(3–4):441–50.

    Article  CAS  PubMed  Google Scholar 

  12. Simpson JL. Gonadal dysgenesis and abnormalities of the human sex chromosomes: current status of phenotypic-karyotypic correlations. Birth Defects Orig Artic Ser. 1975;11(4):23–59.

    CAS  PubMed  Google Scholar 

  13. Kawano Y, Narahara H, Matsui N, Miyakawa I. Premature ovarian failure associated with a Robertsonian translocation. Acta Obstet Gynecol Scand. 1998;77(4):467–9.

    CAS  PubMed  Google Scholar 

  14. Orczyk GP, Pehrson J, Leventhal JM. Premature ovarian failure in a 35-year-old woman with a Robertsonian translocation. Int J Fertil. 1989;34(3):184–7.

  15. Ceylaner G, Altinkaya SO, Mollamahmutoglu L, Ceylaner S. Genetic abnormalities in Turkish women with premature ovarian failure. Int J Gynaecol Obstet. 2010;110(2):122–4.

    Article  CAS  PubMed  Google Scholar 

  16. Utine GE, Şimşek-Kiper PÖ, Akgün-Doğan Ö, Ürel-Demir G, Alanay Y, Aktaş D, Boduroğlu K, Tunçbilek E, Alikaşifoğlu M. Fragile x-associated premature ovarian failure in a large Turkish cohort: findings of Hacettepe Fragile X Registry. Eur J Obstet Gynecol Reprod Biol. 2018;221:76–80.

    Article  PubMed  Google Scholar 

  17. De Caro JJ, Dominguez C, Sherman SL. Reproductive health of adolescent girls who carry the FMR1 premutation: expected phenotype based on current knowledge of fragile x-associated primary ovarian insufficiency. Ann N Y Acad Sci. 2008;1135:99–111.

    Article  PubMed  CAS  Google Scholar 

  18. Barasoain M, Barrenetxea G, Huerta I, Télez M, Criado B, Arrieta I. Study of the genetic etiology of primary ovarian insufficiency: FMR1 gene. Genes (Basel). 2016;7(12):123.

    Article  CAS  Google Scholar 

  19. Hall DA, Berry-Kravis E. Fragile X syndrome and fragile X-associated tremor ataxia syndrome. Handb Clin Neurol. 2018;147:377–91.

    Article  PubMed  Google Scholar 

  20. Tšuiko O, Nõukas M, Žilina O, Hensen K, Tapanainen JS, Mägi R, Kals M, Kivistik PA, Haller-Kikkatalo K, Salumets A, Kurg A. Copy number variation analysis detects novel candidate genes involved in follicular growth and oocyte maturation in a cohort of premature ovarian failure cases. Hum Reprod. 2016;31(8):1913–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. McGuire MM, Bowden W, Engel NJ, Ahn HW, Kovanci E, Rajkovic A. Genomic analysis using high-resolution single-nucleotide polymorphism arrays reveals novel microdeletions associated with premature ovarian failure. Fertil Steril. 2011;95(5):1595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Norling A, Hirschberg AL, Rodriguez-Wallberg KA, Iwarsson E, Wedell A, Barbaro M. Identification of a duplication within the GDF9 gene and novel candidate genes for primary ovarian insufficiency (POI) by a customized high-resolution array comparative genomic hybridization platform. Hum Reprod. 2014;29(8):1818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castronovo C, Rossetti R, Rusconi D, Recalcati MP, Cacciatore C, Beccaria E, Calcaterra V, Invernizzi P, Larizza D, Finelli P, Persani L. Gene dosage as a relevant mechanism contributing to the determination of ovarian function in Turner syndrome. Hum Reprod. 2014;29(2):368–79.

    Article  CAS  PubMed  Google Scholar 

  24. Jaillard S, Akloul L, Beaumont M, Hamdi-Roze H, Dubourg C, Odent S, Duros S, Dejucq-Rainsford N, Belaud-Rotureau MA, Ravel C. Array-CGH diagnosis in ovarian failure: identification of new molecular actors for ovarian physiology. J Ovarian Res. 2016;9(1):63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bestetti I, Castronovo C, Sironi A, Caslini C, Sala C, Rossetti R, Crippa M, Ferrari I, Pistocchi A, Toniolo D, Persani L, Marozzi A, et al. High-resolution array-CGH analysis on 46, XX patients affected by early onset primary ovarian insufficiency discloses new genes involved in ovarian function. Hum Reprod. 2019;34(3):574–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhen XM, Sun YM, Qiao J, Li R, Wang LN, Liu P. Genome-wide copy number scan in Chinese patients with premature ovarian failure. Beijing Da Xue Xue Bao Yi Xue Ban. 2013;45(6):841–7.

    CAS  PubMed  Google Scholar 

  27. Jin H, Ahn J, Park Y, Sim J, Park HS, Ryu CS, Kim NK, Kwack K. Identification of potential causal variants for premature ovarian failure by whole exome sequencing. BMC Med Genomics. 2020;13(1):159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee Y, Kim C, Park Y, Pyun JA, Kwack K. Next generation sequencing identifies abnormal Y chromosome and candidate causal variants in premature ovarian failure patients. Genomics. 2016;108(5–6):209–15.

    Article  CAS  PubMed  Google Scholar 

  29. Fonseca DJ, Patiño LC, Suárez YC, de Jesús RA, Mateus HE, Jiménez KM, Ortega-Recalde O, Díaz-Yamal I, Laissue P. Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations. Fertil Steril. 2015;104(1):154-62.e2.

    Article  CAS  PubMed  Google Scholar 

  30. Jolly A, Bayram Y, Turan S, Aycan Z, Tos T, Abali ZY, Hacihamdioglu B, Coban Akdemir ZH, Hijazi H, Bas S, Atay Z, Guran T, et al. Exome sequencing of a primary ovarian insufficiency cohort reveals common molecular etiologies for a spectrum of disease. J Clin Endocrinol Metab. 2019;104(8):3049–67.

    Article  PubMed  PubMed Central  Google Scholar 

  31. França MM, Mendonca BB. Genetics of primary ovarian insufficiency in the next-generation sequencing era. J Endocr Soc. 2019;4(2):bvz037.

  32. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, Massouras A. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35(11):1978–80.

    Article  CAS  PubMed  Google Scholar 

  34. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

  35. Qin Y, Guo T, Li G, Tang TS, Zhao S, Jiao X, Gong J, Gao F, Guo C, Simpson JL, Chen ZJ. CSB-PGBD3 mutations cause premature ovarian failure. PLoS Genet. 2015;11(7):e1005419.

  36. Baronchelli S, Conconi D, Panzeri E, Bentivegna A, Redaelli S, Lissoni S, Saccheri F, Villa N, Crosti F, Sala E, Martinoli E, Volontè M, et al. Cytogenetics of premature ovarian failure: an investigation on 269 affected women. J Biomed Biotechnol. 2011;2011:370195.

  37. Ayed W, Amouri A, Hammami W, Kilani O, Turki Z, Harzallah F, Bouayed-Abdelmoula N, Chemkhi I, Zhioua F, Slama CB. Cytogenetic abnormalities in Tunisian women with premature ovarian failure. C R Biol. 2014;337(12):691–4.

    Article  PubMed  Google Scholar 

  38. Geckinli BB, Toksoy G, Sayar C, Soylemez MA, Yesil G, Aydın H, Karaman A, Devranoglu B. Prevalence of X-aneuploidies, X-structural abnormalities and 46, XY sex reversal in Turkish women with primary amenorrhea or premature ovarian insufficiency. Eur J Obstet Gynecol Reprod Biol. 2014;182:211–5.

    Article  CAS  PubMed  Google Scholar 

  39. Bione S, Sala C, Manzini C, Arrigo G, Zuffardi O, Banfi S, Borsani G, Jonveaux P, Philippe C, Zuccotti M, Ballabio A, Toniolo D. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet. 1998;62(3):533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Genesio R, Mormile A, Licenziati MR, De Brasi D, Leone G, Balzano S, Izzo A, Bonfiglio F, Conti A, Fioretti G, Lenta S, Poggiano MR, et al. Short stature and primary ovarian insufficiency possibly due to chromosomal position effect in a balanced X;1 translocation. Mol Cytogenet. 2015;8:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Vichinsartvichai P, Manolertthewan C, Promrungrueng P. Premature ovarian failure with 46,XX,t(1;4)(p34.1;q34): first case report and literature review. Climacteric. 2015;18(4):656–8.

  42. Tupler R, Barbierato L, Larizza D, Sampaolo P, Piovella F, Maraschio P. Balanced autosomal translocations and ovarian dysgenesis. Hum Genet. 1994;94(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  43. Wortham NC, Proud CG. eIF2B: recent structural and functional insights into a key regulator of translation. Biochem Soc Trans. 2015;43(6):1234–40.

    Article  CAS  PubMed  Google Scholar 

  44. Liu H, Wei X, Sha Y, Liu W, Gao H, Lin J, Li Y, Tang Y, Wang Y, Wang Y, Su Z. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention. J Ovarian Res. 2020;13(1):114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell. 1992;71(6):939–53.

    Article  CAS  PubMed  Google Scholar 

  46. Shen J, Qu D, Gao Y, Sun F, Xie J, Sun X, Wang D, Ma X, Cui Y, Liu J, Diao F. Genetic etiologic analysis in 74 Chinese Han women with idiopathic premature ovarian insufficiency by combined molecular genetic testing. J Assist Reprod Genet. 2021;38(4):965–78.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tiosano D, Mears JA, Buchner DA. Mitochondrial dysfunction in primary ovarian insufficiency. Endocrinology. 2019;160(10):2353–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dallabona C, Diodato D, Kevelam SH, Haack TB, Wong LJ, Salomons GS, Baruffini E, Melchionda L, Mariotti C, Strom TM, Meitinger T, Prokisch H, et al. Novel (ovario) leukodystrophy related to AARS2 mutations. Neurology. 2014;82(23):2063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lakshmanan R, Adams ME, Lynch DS, Kinsella JA, Phadke R, Schott JM, Murphy E, Rohrer JD, Chataway J, Houlden H, Fox NC, Davagnanam I. Redefining the phenotype of ALSP and AARS2 mutation-related leukodystrophy. Neurol Genet. 2017;3(2):e135.

  50. Taglia I, Di Donato I, Bianchi S, Cerase A, Monti L, Marconi R, Orrico A, Rufa A, Federico A, Dotti MT. AARS2-related ovarioleukodystrophy: clinical and neuroimaging features of three new cases. Acta Neurol Scand. 2018;138(4):278–83.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Y, Chen B, Li L, Pan H, Liu B, Li T, Wang R, Ma X, Wang B, Cao Y. Novel alanyl-tRNA synthetase 2 (AARS2) homozygous mutation in a consanguineous Chinese family with premature ovarian insufficiency. Fertil Steril. 2019;112(3):569-576.e2.

    Article  CAS  PubMed  Google Scholar 

  52. Hamatani M, Jingami N, Tsurusaki Y, Shimada S, Shimojima K, Asada-Utsugi M, Yoshinaga K, Uemura N, Yamashita H, Uemura K, Takahashi R, Matsumoto N, et al. The first Japanese case of leukodystrophy with ovarian failure arising from novel compound heterozygous AARS2 mutations. J Hum Genet. 2016;61(10):899–902.

    Article  CAS  PubMed  Google Scholar 

  53. De Michele G, Galatolo D, Lieto M, Maione L, Cocozza S, Santorelli FM, Filla A. New AARS2 mutations in two siblings with tremor, downbeat nystagmus, and primary amenorrhea: a benign phenotype without leukoencephalopathy. Mov Disord Clin Pract. 2020;7(6):684–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Szpisjak L, Zsindely N, Engelhardt JI, Vecsei L, Kovacs GG, Klivenyi P. Novel AARS2 gene mutation producing leukodystrophy: a case report. J Hum Genet. 2017;62(2):329–33.

    Article  CAS  PubMed  Google Scholar 

  55. Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, Seemanová E, Cooper PR, Nowak NJ, Stumm M, Weemaes CM, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93(3):467–76.

    Article  CAS  PubMed  Google Scholar 

  56. Tucker EJ, Grover SR, Robevska G, van den Bergen J, Hanna C, Sinclair AH. Identification of variants in pleiotropic genes causing “isolated” premature ovarian insufficiency: implications for medical practice. Eur J Hum Genet. 2018;26(9):1319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, te Riele H. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999;13(5):523–31.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr, Kolodner RD, Kucherlapati R, Pollard JW, Edelmann W. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 2000;14(9):1085–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Akbari A, Padidar K, Salehi N, Mashayekhi M, Almadani N, Sadighi Gilani MA, Bashambou A, McElreavey K, Totonchi M. Rare missense variant in MSH4 associated with primary gonadal failure in both 46, XX and 46. XY individuals Hum Reprod. 2021;36(4):1134–45.

    Article  CAS  PubMed  Google Scholar 

  60. Carlosama C, Elzaiat M, Patiño LC, Mateus HE, Veitia RA, Laissue P. A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency. Hum Mol Genet. 2017;26(16):3161–6.

    CAS  PubMed  Google Scholar 

  61. Guo T, Zhao S, Zhao S, Chen M, Li G, Jiao X, Wang Z, Zhao Y, Qin Y, Gao F, Chen ZJ. Mutations in MSH5 in primary ovarian insufficiency. Hum Mol Genet. 2017;26(8):1452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mandon-Pépin B, Touraine P, Kuttenn F, Derbois C, Rouxel A, Matsuda F, Nicolas A, Cotinot C, Fellous M. Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur J Endocrinol. 2008;158(1):107–15.

    Article  PubMed  CAS  Google Scholar 

  63. Patiño LC, Silgado D, Laissue P. A potential functional association between mutant BMPR2 and primary ovarian insufficiency. Syst Biol Reprod Med. 2017;63(3):145–9.

    Article  PubMed  CAS  Google Scholar 

  64. França MM, Funari MFA, Lerario AM, Santos MG, Nishi MY, Domenice S, Moraes DR, Costalonga EF, Maciel GAR, Maciel-Guerra AT, Guerra-Junior G, Mendonca BB. Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency.PLoS One. 2020;15(10):e0240795.

  65. L’Hôte D, Vatin M, Auer J, Castille J, Passet B, Montagutelli X, Serres C, Vaiman D. Fidgetin-like1 is a strong candidate for a dynamic impairment of male meiosis leading to reduced testis weight in mice. PLoS One. 2011;6(11):e27582.

  66. Yuan J, Chen J. FIGNL1-containing protein complex is required for efficient homologous recombination repair. Proc Natl Acad Sci USA. 2013;110(26):10640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Govindaraj V, Rao AJ. Comparative proteomic analysis of primordial follicles from ovaries of immature and aged rats. Syst Biol Reprod Med. 2015;61(6):367–75.

    Article  CAS  PubMed  Google Scholar 

  68. Ledig S, Röpke A, Wieacker P. Copy number variants in premature ovarian failure and ovarian dysgenesis. Sex Dev. 2010;4(4–5):225–32.

    Article  CAS  PubMed  Google Scholar 

  69. Visser JA, Themmen AP. Anti-Müllerian hormone and folliculogenesis. Mol Cell Endocrinol. 2005;234(1–2):81–6.

    Article  CAS  PubMed  Google Scholar 

  70. Li L, Zhou X, Wang X, Wang J, Zhang W, Wang B, Cao Y, Kee K. A dominant negative mutation at the ATP binding domain of AMHR2 is associated with a defective anti-Müllerian hormone signaling pathway. Mol Hum Reprod. 2016;22(9):669–78.

    Article  CAS  PubMed  Google Scholar 

  71. Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol. 2000;14(7):1053–63.

    Article  CAS  PubMed  Google Scholar 

  72. Daum H, Zlotogora J. Fanconi anemia gene variants in patients with gonadal dysfunction. Reprod Sci. 2021.

  73. Yang Y, Guo T, Liu R, Ke H, Xu W, Zhao S, Qin Y. FANCL gene mutations in premature ovarian insufficiency. Hum Mutat. 2020;41(5):1033–41.

    Article  CAS  PubMed  Google Scholar 

  74. Xu K, Chen X, Yang H, Xu Y, He Y, Wang C, Huang H, Liu B, Liu W, Li J, Kou X, Zhao Y, et al. Maternal Sall4 is indispensable for epigenetic maturation of mouse oocytes. J Biol Chem. 2017;292(5):1798–807.

    Article  CAS  PubMed  Google Scholar 

  75. Wang Q, Li D, Cai B, Chen Q, Li C, Wu Y, Jin L, Wang X, Zhang X, Zhang F. Whole-exome sequencing reveals SALL4 variants in premature ovarian insufficiency: an update on genotype-phenotype correlations. Hum Genet. 2019;138(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  76. Yang X, Touraine P, Desai S, Humphreys G, Jiang H, Yatsenko A, Rajkovic A. Gene variants identified by whole-exome sequencing in 33 French women with premature ovarian insufficiency. J Assist Reprod Genet. 2019;36(1):39–45.

    Article  PubMed  Google Scholar 

  77. Eskenazi S, Bachelot A, Hugon-Rodin J, Plu-Bureau G, Gompel A, Catteau-Jonard S, Molina-Gomes D, Dewailly D, Dodé C, Christin-Maitre S, Touraine P. Next generation sequencing should be proposed to every woman with “idiopathic” primary ovarian insufficiency. J Endocr Soc. 2021;5(7):bvab032.

  78. Bouilly J, Beau I, Barraud S, Bernard V, Azibi K, Fagart J, Fèvre A, Todeschini AL, Veitia RA, Beldjord C, Delemer B, Dodé C, Young J, Binart N. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian insufficiency. J Clin Endocrinol Metab. 2016;101(12):4541–50.

    Article  CAS  PubMed  Google Scholar 

  79. La Marca A, Mastellari E. Fertility preservation for genetic diseases leading to premature ovarian insufficiency (POI). J Assist Reprod Genet. 2021;38(4):759–77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank all the patients and their family members for donating their biological samples.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ayberk Turkyilmaz; Methodology: Ayberk Turkyilmaz; Formal analysis and investigation: Ceren Alavanda, Esra Arslan Ates, Bilgen Bilge Geckinli, Hamza Polat, Taner Karakaya, Mehmet Gokcu, Alper Han Cebi; Writing—original draft preparation: Ayberk Turkyilmaz; Writing—review and editing: Mehmet Ali Soylemez, Ahmet Ilter Guney, Pinar Ata, Ahmet Arman; Supervision: Ahmet İlter Guney, Pinar Ata, Ahmet Arman.

Corresponding author

Correspondence to Ayberk Turkyilmaz.

Ethics declarations

Ethics approval

The study was evaluated and approved by the Ethics Committee of Marmara University School of Medicine (Registration Number: 09.2020.752).

Consent to participate

All subjects participating in this study signed informed consent forms.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkyilmaz, A., Alavanda, C., Ates, E.A. et al. Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency. J Assist Reprod Genet 39, 695–710 (2022). https://doi.org/10.1007/s10815-022-02408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02408-0

Keywords

Navigation