Skip to main content

Advertisement

Log in

The Hippo pathway effectors YAP and TAZ interact with EGF-like signaling to regulate expansion-related events in bovine cumulus cells in vitro

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract  

Purpose

To determine if the inhibition of the interaction between the Hippo effector YAP or its transcriptional co-activator TAZ with the TEAD family of transcription factors is critical for the cumulus expansion–related events induced by the EGF network in cumulus-oocyte complexes (COCs).

Methods

We performed a series of experiments using immature bovine COCs subjected to an IVM protocol for up 24 h in which cumulus expansion was stimulated with EGF recombinant protein or FSH.

Results

The main results indicated that EGFR activity stimulation in bovine cumulus cells (CC) increases mRNA levels encoding the classic YAP/TAZ-TEAD target gene CTGF. To determine if important genes for cumulus expansion are transcriptional targets of YAP/TAZ-TEAD interaction in CC, COCs were then subjected to IVM in the presence of FSH with or without distinct concentrations of Verteporfin (VP; a small molecule inhibitor that interferes with YAP/TAZ binding to TEADs). COCs were then collected at 6, 12, 18, and 24 h for total RNA extraction and RT-qPCR analyses. This experiment indicated that VP inhibits in a time- and concentration-dependent manner distinct cumulus expansion and oocyte maturation–related genes, by regulating EGFR and CTGF expression in CC.

Conclusions

Taken together, the results presented herein represent considerable insight into the functional relevance of a completely novel signaling pathway underlying cumulus expansion and oocyte maturation in monovulatory species. YAP/TAZ or CTGF may represent potential targets to improve the efficiency of IVM systems, not only for monovulatory species of agricultural importance as the cow, but for human embryo production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

Abbreviations

ADAM17:

A disintegrin and metalloproteinase 17

AREG:

Amphiregulin

CC:

Cumulus cells

COCs:

Cumulus-oocyte complexes

CTGF:

Connective tissue growth factor

DMSO:

Dimethyl sulfoxide

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EREG:

Epiregulin

FSH:

Follicle-stimulating hormone

GC:

Granulosa cells

H2AFZ:

Histone H2A.Z

HAS2:

Hyaluronan synthase 2

IHC:

Immunohistochemistry

IVM:

In vitro maturation

LH:

Luteinizing hormone

PLAT:

Plasminogen activator tissue-type A

PTGS2:

Prostaglandin endoperoxide synthase 2

PTX3:

Pentraxin-related protein 3

RPS18:

Ribosomal protein S18

TAZ:

Transcriptional co-activator with PDZ-binding motif

TEAD:

Transcriptional enhanced associate domain

VP:

Verteporfin

YAP:

Yes-associated protein 1

References

  1. Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50(2):225–32. https://doi.org/10.1095/biolreprod50.2.225.

    Article  CAS  PubMed  Google Scholar 

  2. Bromer JG, Cetinkaya MB, Arici A: Pretreatments before the induction of ovulation in assisted reproduction technologies: evidence-based medicine in 2007. Ann N Y Acad Sci 2008, 1127 31–40 https://doi.org/10.1196/annals.1434.004

  3. Davis BJ, Lennard DE, Lee CA, Tiano HF, Morham SG, Wetsel WC, Langenbach R. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E2 and interleukin-1beta. Endocrinology. 1999;140(6):2685–95. https://doi.org/10.1210/endo.140.6.6715.

    Article  CAS  PubMed  Google Scholar 

  4. Espey LL. Ovulation as an inflammatory reaction–a hypothesis. Biol Reprod. 1980;22(1):73–106. https://doi.org/10.1095/biolreprod22.1.73.

    Article  CAS  PubMed  Google Scholar 

  5. Shimada M, Hernandez-Gonzalez I, Gonzalez-Robayna I, Richards JS. Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol Endocrinol. 2006;20(6):1352–65. https://doi.org/10.1210/me.2005-0504.

    Article  CAS  PubMed  Google Scholar 

  6. Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13(3):289–312. https://doi.org/10.1093/humupd/dml062.

    Article  CAS  PubMed  Google Scholar 

  7. Portela VM, Zamberlam G, Goncalves PB, de Oliveira JF, Price CA. Role of angiotensin II in the periovulatory epidermal growth factor-like cascade in bovine granulosa cells in vitro. Biol Reprod. 2011;85(6):1167–74. https://doi.org/10.1095/biolreprod.111.094193.

    Article  CAS  PubMed  Google Scholar 

  8. Park J-Y, Su Y-Q, Ariga M, Law E, Jin SLC, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.

    Article  CAS  PubMed  Google Scholar 

  9. Reizel Y, Elbaz J, Dekel N. Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion. Mol Endocrinol. 2010;24(2):402–11. https://doi.org/10.1210/me.2009-0267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heath E, Tahri D, Andermarcher E, Schofield P, Fleming S, Boulter CA. Abnormal skeletal and cardiac development, cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC Deve Biol. 2008;8:18. https://doi.org/10.1186/1471-213x-8-18.

    Article  Google Scholar 

  11. Lai D, Ho KC, Hao Y, Yang X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 2011;71(7):2728–38. https://doi.org/10.1158/0008-5472.Can-10-2711.

    Article  CAS  PubMed  Google Scholar 

  12. Mauviel A, Nallet-Staub F, Varelas X. Integrating developmental signals: a Hippo in the (path)way. Oncogene. 2012;31(14):1743–56. https://doi.org/10.1038/onc.2011.363.

    Article  CAS  PubMed  Google Scholar 

  13. Malik AR, Liszewska E, Jaworski J. Matricellular proteins of the Cyr61/CTGF/NOV (CCN) family and the nervous system. Front Cell Neurosci. 2015;9:237–237. https://doi.org/10.3389/fncel.2015.00237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dos Santos EC, Lalonde-Larue A, Antoniazzi AQ, Barreta MH, Price CA, Dias Gonçalves PB, Portela VM, Zamberlam G. YAP signaling in preovulatory granulosa cells is critical for the functioning of the EGF network during ovulation. Mol Cell Endocrinol. 2021;541:111524. https://doi.org/10.1016/j.mce.2021.111524

  15. Sun T, Diaz FJ. Ovulatory signals alter granulosa cell behavior through YAP1 signaling. Reprod Biol Endocrinol. 2019;17(1):113–113. https://doi.org/10.1186/s12958-019-0552-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campbell BK, Souza C, Gong J, Webb R, Kendall N, Marsters P, Robinson G, Mitchell A, Telfer EE, Baird DT. Domestic ruminants as models for the elucidation of the mechanisms controlling ovarian follicle development in humans. Reproduction (Cambridge, England) Suppl. 2003;61:429–43.

    CAS  Google Scholar 

  17. Leibfried L, First NL. Characterization of bovine follicular oocytes and their ability to mature in vitro. J Anim Sci. 1979;48(1):76–86. https://doi.org/10.2527/jas1979.48176x.

    Article  CAS  PubMed  Google Scholar 

  18. Stefanello JR, Barreta MH, Porciuncula PM, Arruda JN, Oliveira JF, Oliveira MA, Gonçalves PB. Effect of angiotensin II with follicle cells and insulin-like growth factor-I or insulin on bovine oocyte maturation and embryo development. Theriogenology. 2006;66(9):2068–76. https://doi.org/10.1016/j.theriogenology.2006.06.005.

    Article  CAS  PubMed  Google Scholar 

  19. Barreta MH, Oliveira JF, Ferreira R, Antoniazzi AQ, Gasperin BG, Sandri LR, Gonçalves PB. Evidence that the effect of angiotensin II on bovine oocyte nuclear maturation is mediated by prostaglandins E2 and F2alpha. Reproduction. 2008;136(6):733–40. https://doi.org/10.1530/rep-08-0268.

    Article  CAS  PubMed  Google Scholar 

  20. De Cesaro MP, Macedo MP, Santos JT, Rosa PR, Ludke CA, Rissi VB, Gasperin BG, Gonçalves PB. Natriuretic peptides stimulate oocyte meiotic resumption in bovine. Anim Reprod Sci. 2015;159:52–9. https://doi.org/10.1016/j.anireprosci.2015.05.012.

    Article  CAS  PubMed  Google Scholar 

  21. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26(12):1300–5. https://doi.org/10.1101/gad.192856.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Price JC, Sheldon IM. Granulosa cells from emerged antral follicles of the bovine ovary initiate inflammation in response to bacterial pathogen-associated molecular patterns via Toll-like receptor pathways. Biol Reprod. 2013;89(5):119. https://doi.org/10.1095/biolreprod.113.110965.

    Article  CAS  PubMed  Google Scholar 

  24. Portela VM, Zamberlam G, Price CA. Cell plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells. Fertil Steril. 2010;93(6):2050–5. https://doi.org/10.1016/j.fertnstert.2009.01.151.

    Article  CAS  PubMed  Google Scholar 

  25. Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1–17. https://doi.org/10.1101/gad.274027.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halder G, Johnson RL. Hippo signaling: growth control and beyond. Development. 2011;138(1):9–22. https://doi.org/10.1242/dev.045500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagashima T, Kim J, Li Q, Lydon JP, DeMayo FJ, Lyons KM, Matzuk MM. Connective tissue growth factor is required for normal follicle development and ovulation. Mol Endocrinol. 2011;25(10):1740–59. https://doi.org/10.1210/me.2011-1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Plewes MR, Hou X, Zhang P, Liang A, Hua G, Wood JR, Cupp AS, Lv X, Wang C, Davis JS. Yes-associated protein 1 is required for proliferation and function of bovine granulosa cells in vitro. Biol Reprod. 2019;101(5):1001–17. https://doi.org/10.1093/biolre/ioz139.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hu LL, Su T, Luo RC, Zheng YH, Huang J, Zhong ZS, Nie J, Zheng LP. Hippo pathway functions as a downstream effector of AKT signaling to regulate the activation of primordial follicles in mice. J Cell Physiol. 2019;234(2):1578–87. https://doi.org/10.1002/jcp.27024.

    Article  CAS  PubMed  Google Scholar 

  30. Lv X, He C, Huang C, Wang H, Hua G, Wang Z, Zhou J, Chen X, Ma B, Timm BK, et al. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development. FASEB J. 2019;33(9):10049–64. https://doi.org/10.1096/fj.201900179RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsoi M, Morin M, Rico C, Johnson RL, Paquet M, Gévry N, Boerboom D. Lats1 and Lats2 are required for ovarian granulosa cell fate maintenance. FASEB J. 2019;33(10):10819–32. https://doi.org/10.1096/fj.201900609R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ochsner SA, Day AJ, Rugg MS, Breyer RM, Gomer RH, Richards JS. Disrupted function of tumor necrosis factor-alpha-stimulated gene 6 blocks cumulus cell-oocyte complex expansion. Endocrinology. 2003;144(10):4376–84. https://doi.org/10.1210/en.2003-0487.

    Article  CAS  PubMed  Google Scholar 

  33. Su YQ, Denegre JM, Wigglesworth K, Pendola FL, O’Brien MJ, Eppig JJ. Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte-cumulus cell complex. Dev Biol. 2003;263(1):126–38. https://doi.org/10.1016/s0012-1606(03)00437-8.

    Article  CAS  PubMed  Google Scholar 

  34. Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, Doni A, Bastone A, Mantovani G, Beck Peccoz P, et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development. 2004;131(7):1577–86. https://doi.org/10.1242/dev.01056.

    Article  CAS  PubMed  Google Scholar 

  35. Yang R, Wu Y, Zou J, Zhou J, Wang M, Hao X, Cui H. The Hippo transducer TAZ promotes cell proliferation and tumor formation of glioblastoma cells through EGFR pathway. Oncotarget. 2016;7(24):36255–65. https://doi.org/10.18632/oncotarget.9199.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Andrade D, Mehta M, Griffith J, Panneerselvam J, Srivastava A, Kim T-D, Janknecht R, Herman T, Ramesh R, Munshi A. YAP1 inhibition radiosensitizes triple negative breast cancer cells by targeting the DNA damage response and cell survival pathways. Oncotarget. 2017;8(58):98495–508. https://doi.org/10.18632/oncotarget.21913.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao L, Guan H, Song C, Wang Y, Liu C, Cai C, Zhu H, Liu H, Zhao L, Xiao J. YAP1 is essential for osteoclastogenesis through a TEADs-dependent mechanism. Bone. 2018;110:177–86. https://doi.org/10.1016/j.bone.2018.01.035.

    Article  CAS  PubMed  Google Scholar 

  38. Song S, Honjo S, Jin J, Chang SS, Scott AW, Chen Q, Kalhor N, Correa AM, Hofstetter WL, Albarracin CT, et al. The Hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clin Cancer Res. 2015;21(11):2580–90. https://doi.org/10.1158/1078-0432.Ccr-14-2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tome-Garcia J, Erfani P, Nudelman G, Tsankov AM, Katsyv I, Tejero R, Bin Z, Walsh M, Friedel RH, Zaslavsky E, et al. Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat Commun. 2018;9(1):4020. https://doi.org/10.1038/s41467-018-06258-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang DH, Ren J, Zhou CJ, Han Z, Wang L, Liang CG. Supplementation with CTGF, SDF1, NGF, and HGF promotes ovine in vitro oocyte maturation and early embryo development. Domest Anim Endocrinol. 2018;65:38–48. https://doi.org/10.1016/j.domaniend.2018.05.003.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13(8):877–83. https://doi.org/10.1038/ncb2303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem. 2010;285(48):37159–69. https://doi.org/10.1074/jbc.M110.152942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24(1):72–85. https://doi.org/10.1101/gad.1843810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61. https://doi.org/10.1101/gad.1602907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Negrón-Pérez VM, Hansen PJ. Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. Biol Reprod. 2018;98(2):170–83. https://doi.org/10.1093/biolre/iox172.

    Article  PubMed  Google Scholar 

  46. Yu B, van Tol HTA, Oei CHY, Stout TAE, Roelen BAJ 2021 Lysophosphatidic acid accelerates bovine in vitro-produced blastocyst formation through the Hippo/YAP pathway. Int J Mol Sci. 22(11) https://doi.org/10.3390/ijms22115915

Download references

Acknowledgements

The authors are thankful to Mrs. Camila Azzolin de Souza and Mrs. Camila Cupper for their support in this study and to Frigorífico Silva for ovaries donation.

Funding

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2018–06470 (to Dr. Zamberlam) and by fellowships from the National Council for Scientific and Technological Development (CNPq; Brazil), Coordination for the Improvement of Higher Education Personnel (CAPES; Brazil) and by the grants from Rio Grande do Sul State Research Support Foundation (FAPERGS – Edital 06/2019; 19/2551–0002275-1) & CNPq, Edital 16/2551–0000494-3; Brazil (to Dr. Gonçalves).

Author information

Authors and Affiliations

Authors

Contributions

J.K., V.M.P., P.B.D.G., and G.Z. were involved in the study conception and design; J.K., V.M.P., E.C., D.M., L.G.A., Z.S., and A.Q.A. performed experiments and were involved in the acquisition and analyzes of data; G.Z., P.B.D.G., and B.G.G contributed with required reagents acquisition; J.K. wrote the main manuscript text and prepared the tables and figures; G.Z. and P.B.D.G. reviewed and edited the manuscript to be published.

Corresponding author

Correspondence to Gustavo Zamberlam.

Ethics declarations

Ethics approval/consent to participate

All ovaries were obtained from a local slaughterhouse and in vitro procedures were approved by the Ethics and Animal Welfare Committee of the Federal University of Santa Maria, Brazil/not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, J., Portela, V.M., Dos Santos, E.C. et al. The Hippo pathway effectors YAP and TAZ interact with EGF-like signaling to regulate expansion-related events in bovine cumulus cells in vitro. J Assist Reprod Genet 39, 481–492 (2022). https://doi.org/10.1007/s10815-021-02384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02384-x

Keywords

Navigation