Skip to main content
Log in

The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to the deficiencies of these systems, but to put forth suggestions for their improvement as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Chinnasamy T, Kingsley JL, Inci F, Turek PJ, Rosen MP, Behr B, et al. Guidance and self-sorting of active swimmers: 3D periodic arrays increase persistence length of human sperm selecting for the fittest. Adv Sci. 2018;5(2):1700531. https://doi.org/10.1002/advs.201700531.

    Article  CAS  Google Scholar 

  2. Zhou Z, Kang Y, Xu Z, Xue P. Development and prospects of microfluidic platforms for sperm inspection. Anal Methods. 2019;11(36):4547–60. https://doi.org/10.1039/C9AY01641D.

    Article  CAS  Google Scholar 

  3. Agarwal A, Selvam MKP. Advanced sperm processing/selection techniques. In: Zini A, Agarwal A, editors. A clinician's guide to sperm DNA and chromatin damage: Springer; 2018. 529–43. https://doi.org/10.1007/978-3-319-71815-6_28

  4. Gonzalez-Castro RA, Carnevale EM. Use of microfluidics to sort stallion sperm for intracytoplasmic sperm injection. Anim Reprod Sci. 2019;202:1–9. https://doi.org/10.1016/j.anireprosci.2018.12.012.

    Article  PubMed  Google Scholar 

  5. Boskey E, Cone R, Whaley K, Moench T. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16(9):1809–13. https://doi.org/10.1093/humrep/16.9.1809.

    Article  CAS  PubMed  Google Scholar 

  6. Organization WH. WHO laboratory manual for the examination and processing of human semen. 2010

  7. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45. https://doi.org/10.1093/humupd/dmp048.

    Article  PubMed  Google Scholar 

  8. Saladin KS, Porth C. Anatomy & physiology: the unity of form and function: McGraw-Hill New York; 2010.

  9. Hall JE. Guyton and Hall textbook of medical physiology e-Book: Elsevier Health Sciences; 2015.

  10. Alves MBR, Celeghini ECC, Belleannée C. From sperm motility to sperm-borne microRNA signatures: new approaches to predict male fertility potential. Front Cell Dev Biol. 2020;8:791. https://doi.org/10.3389/fcell.2020.00791.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013;23(6):443–52. https://doi.org/10.1016/j.cub.2013.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gadêlha H, Gaffney E, Smith D, Kirkman-Brown J. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J R Soc Interface. 2010;7(53):1689–97. https://doi.org/10.1098/rsif.2010.0136.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Elgeti J, Kaupp UB, Gompper G. Hydrodynamics of sperm cells near surfaces. Biophys J. 2010;99(4):1018–26. https://doi.org/10.1016/j.bpj.2010.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedrich BM, Riedel-Kruse IH, Howard J, Julicher F. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J Exp Biol. 2010;213(Pt 8):1226–34. https://doi.org/10.1242/jeb.039800.

    Article  CAS  PubMed  Google Scholar 

  15. Publicover S, Harper CV, Barratt C. [Ca 2+] i signalling in sperm—making the most of what you’ve got. Nat Cell Biol. 2007;9(3):235. https://doi.org/10.1038/ncb0307-235.

    Article  CAS  PubMed  Google Scholar 

  16. Tamm S. Ca2+ channels and signalling in cilia and flagella. Trends Cell Biol. 1994;4(9):305–10. https://doi.org/10.1016/0962-8924(94)90226-7.

    Article  CAS  PubMed  Google Scholar 

  17. Chenoweth PJ. Genetic sperm defects. Theriogenology. 2005;64(3):457–68. https://doi.org/10.1016/j.theriogenology.2005.05.005.

    Article  CAS  PubMed  Google Scholar 

  18. Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21(6):711–26. https://doi.org/10.1093/humupd/dmv042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huchzermeyer S, Wehrend A, Bostedt H. Histomorphology of the equine cervix. Anat Histol Embryol. 2005;34(1):38–41. https://doi.org/10.1111/j.1439-0264.2004.00565.x.

    Article  CAS  PubMed  Google Scholar 

  20. June Mullins K, Saacke R. Study of the functional anatomy of bovine cervical mucosa with special reference to mucus secretion and sperm transport. Anat Rec. 1989;225(2):106–17. https://doi.org/10.1002/ar.1092250205.

    Article  Google Scholar 

  21. Kessel RG, Kardon RH. Tissues and organs a text atlas of scanning electron microscopy; 1979.

  22. Tung CK, Ardon F, Roy A, Koch DL, Suarez SS, Wu M. Emergence of upstream swimming via a hydrodynamic transition. Phys Rev Lett. 2015;114(10):108102. https://doi.org/10.1103/PhysRevLett.114.108102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suarez S, Wu M. Microfluidic devices for the study of sperm migration. Mol Hum Reprod. 2016;23(4):227–34. https://doi.org/10.1093/molehr/gaw039.

    Article  CAS  PubMed Central  Google Scholar 

  24. Nosrati R, Graham PJ, Liu Q, Sinton D. Predominance of sperm motion in corners. Sci Rep. 2016;6:26669. https://doi.org/10.1038/srep26669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suarez S. Gamete and zygote transport. In: Zeleznik A, editor. Plant T. Knobil and Neill’s Physiology of Reproduction: Academic Press; 2015. p. 197–232.

    Google Scholar 

  26. Parker GHVII. The passage of sperms and of eggs through the oviducts in terrestrial vertebrates. Philosophical Transactions of the Royal Society of London Series B, Containing Papers of a Biological Character. 1931;219(462–467):381–419. https://doi.org/10.1098/rstb.1931.0008.

    Article  Google Scholar 

  27. Lott G. Zur Anatomie und Physiologie des Cervix uteri: Enke; 1872.

  28. Smith DJ, Gaffney EA, Gadelha H, Kapur N, Kirkman-Brown JC. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. Cell Motil Cytoskeleton. 2009;66(4):220–36. https://doi.org/10.1002/cm.20345.

    Article  CAS  PubMed  Google Scholar 

  29. Tung CK, Lin C, Harvey B, Fiore AG, Ardon F, Wu M, et al. Fluid viscoelasticity promotes collective swimming of sperm. Sci Rep. 2017;7(1):3152. https://doi.org/10.1038/s41598-017-03341-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pérez-Cerezales S, Boryshpolets S, Eisenbach M. Behavioral mechanisms of mammalian sperm guidance. Asian J Androl. 2015;17(4):628. https://doi.org/10.4103/1008-682X.154308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oren-Benaroya R, Orvieto R, Gakamsky A, Pinchasov M, Eisenbach M. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum Reprod. 2008;23(10):2339–45. https://doi.org/10.1093/humrep/den265.

    Article  CAS  PubMed  Google Scholar 

  32. Boryshpolets S, Perez-Cerezales S, Eisenbach M. Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum Reprod. 2015;30(4):884–92. https://doi.org/10.1093/humrep/dev002.

    Article  PubMed  Google Scholar 

  33. Bahat A, Eisenbach M, Tur-Kaspa I. Periovulatory increase in temperature difference within the rabbit oviduct. Hum Reprod. 2005;20(8):2118–21. https://doi.org/10.1093/humrep/dei006.

    Article  PubMed  Google Scholar 

  34. Bahat A, Caplan SR, Eisenbach M. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLoS ONE. 2012;7(7):e41915. https://doi.org/10.1371/journal.pone.0041915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hunter RH. Human sperm reservoirs and Fallopian tube function: a role for the intra-mural portion? Acta Obstet Gynecol Scand. 1995;74(9):677–81. https://doi.org/10.3109/00016349509021173.

    Article  CAS  PubMed  Google Scholar 

  36. Suarez SS. Formation of a reservoir of sperm in the oviduct. Reprod Domest Anim. 2002;37(3):140–3. https://doi.org/10.1046/j.1439-0531.2002.00346.x.

    Article  PubMed  Google Scholar 

  37. Gould JE, Overstreet JW, Hanson FW. Assessment of human sperm function after recovery from the female reproductive tract. Biol Reprod. 1984;31(5):888–94. https://doi.org/10.1095/biolreprod31.5.888.

    Article  CAS  PubMed  Google Scholar 

  38. Okabe M. Mechanisms of fertilization elucidated by gene-manipulated animals. Asian J Androl. 2015;17(4):646–52. https://doi.org/10.4103/1008-682X.153299.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chang H, Suarez SS. Unexpected flagellar movement patterns and epithelial binding behavior of mouse sperm in the oviduct. Biol Reprod. 2012;86(5):140, 1–8. https://doi.org/10.1095/biolreprod.111.096578

  40. Chian RC, Sirard MA. Fertilizing ability of bovine spermatozoa cocultured with oviduct epithelial cells. Biol Reprod. 1995;52(1):156–62. https://doi.org/10.1095/biolreprod52.1.156.

    Article  CAS  PubMed  Google Scholar 

  41. Pollard JW, Plante C, Allan King W, Hansen PJ, Betteridge KJ, Suarez SS. Fertilizing capacity of bovine sperm may be maintained by binding to oviductal epithelial cells. Biol Reprod. 1991;44(1):102–7. https://doi.org/10.1095/biolreprod44.1.102.

    Article  CAS  PubMed  Google Scholar 

  42. Smith TT, Yanagimachi R. Attachment and release of spermatozoa from the caudal isthmus of the hamster oviduct. J Reprod Fertil. 1991;91(2):567–73. https://doi.org/10.1530/jrf.0.0910567.

    Article  CAS  PubMed  Google Scholar 

  43. Baker RR, Bellis MA. Human sperm competition: ejaculate manipulation by females and a function for the female orgasm. Anim Behav. 1993;46(5):887–909. https://doi.org/10.1006/anbe.1993.1272.

    Article  Google Scholar 

  44. Overstreet JW, Cooper GW. Sperm transport in the reproductive tract of the female rabbit: II. The sustained phase of transport. Biol Reprod. 1978;19(1):115–32. https://doi.org/10.1095/biolreprod19.1.115.

    Article  CAS  PubMed  Google Scholar 

  45. Harper M. Gamete and zygote transport. In: Nobil E, Neill J, editors. The physiology of reproduction. New York, NY: Raven Press Ltd; 1994. p. 123–88.

    Google Scholar 

  46. Lilja H, Lundwall A. Molecular cloning of epididymal and seminal vesicular transcripts encoding a semenogelin-related protein. Proc Natl Acad Sci USA. 1992;89(10):4559–63. https://doi.org/10.1073/pnas.89.10.4559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li K, Li R, Ni Y, Sun P, Liu Y, Zhang D, et al. Novel distance-progesterone-combined selection approach improves human sperm quality. J Transl Med. 2018;16(1):203. https://doi.org/10.1186/s12967-018-1575-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tung CK, Hu L, Fiore AG, Ardon F, Hickman DG, Gilbert RO, et al. Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. Proc Natl Acad Sci USA. 2015;112(17):5431–6. https://doi.org/10.1073/pnas.1500541112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lottero-Leconte R, Isidro Alonso CA, Castellano L, Perez Martinez S. Mechanisms of the sperm guidance, an essential aid for meeting the oocyte. Transl Cancer Res. 2017;6(2):S427–30. https://doi.org/10.21037/tcr.2017.03.68.

    Article  Google Scholar 

  50. Rodriguez-Purata J, Latre L, Ballester M, González-Llagostera C, Rodríguez I, Gonzalez-Foruria I, et al. Clinical success of IUI cycles with donor sperm is not affected by total inseminated volume: a RCT. Hum Reprod Open. 2018;2018(2):hoy002. https://doi.org/10.1093/hropen/hoy002.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fanchin R, Olivennes F, Righini C, Hazout A, Schwab B, Frydman R. A new system for fallopian tube sperm perfusion leads to pregnancy rates twice as high as standard intrauterine insemination. Fertil Steril. 1995;64(3):505–10. https://doi.org/10.1016/S0015-0282(16)57784-X.

    Article  CAS  PubMed  Google Scholar 

  52. Natali I. Sperm preparation techniques for artificial insemination-comparison of sperm washing, swim up, and density gradient centrifugation methods. In: Manafi M, editor. Artificial Insemination in Farm Animals: In Tech; 2011. 115–22

  53. Group ECW. Intrauterine insemination. Hum Reprod Update. 2009;15(3):265–77. https://doi.org/10.1093/humupd/dmp003.

    Article  Google Scholar 

  54. Coughlan C, Ledger WL. In-vitro fertilisation. Obstet Gynaecol Reprod Med. 2008;18(11):300–6. https://doi.org/10.1016/j.ogrm.2008.08.009.

    Article  Google Scholar 

  55. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8. https://doi.org/10.1016/0140-6736(92)92425-F.

    Article  CAS  PubMed  Google Scholar 

  56. Pinto S, Carrageta DF, Alves MG, Rocha A, Agarwal A, Barros A, et al. Sperm selection strategies and their impact on assisted reproductive technology outcomes. Andrologia. 2020:e13725. https://doi.org/10.1111/and.13725

  57. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60(6):1069–72. https://doi.org/10.1016/s0090-4295(02)01975-1.

    Article  PubMed  Google Scholar 

  58. Said TM, Land JA. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum Reprod Update. 2011;17(6):719–33. https://doi.org/10.1093/humupd/dmr032.

    Article  PubMed  Google Scholar 

  59. Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13. https://doi.org/10.1056/NEJMoa1008095.

    Article  CAS  PubMed  Google Scholar 

  60. Schieve LA, Peterson HB, Meikle SF, Jeng G, Danel I, Burnett NM, et al. Live-birth rates and multiple-birth risk using in vitro fertilization. JAMA. 1999;282(19):1832–8. https://doi.org/10.1001/jama.282.19.1832.

    Article  CAS  PubMed  Google Scholar 

  61. Boulet SL, Kirby RS, Reefhuis J, Zhang Y, Sunderam S, Cohen B, et al. Assisted reproductive technology and birth defects among liveborn infants in Florida, Massachusetts, and Michigan, 2000–2010. JAMA Pediatr. 2016;170(6):e154934–5034. https://doi.org/10.1001/jamapediatrics.2015.4934.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Belva F, Bonduelle M, Roelants M, Michielsen D, Van Steirteghem A, Verheyen G, et al. Semen quality of young adult ICSI offspring: the first results. Hum Reprod. 2016;31(12):2811–20. https://doi.org/10.1093/humrep/dew245.

    Article  CAS  PubMed  Google Scholar 

  63. Schultz RM, Williams CJ. The science of ART. Science. 2002;296(5576):2188–90. https://doi.org/10.1126/science.1071741.

    Article  CAS  PubMed  Google Scholar 

  64. Samuel R, Feng H, Jafek A, Despain D, Jenkins T, Gale B. Microfluidic—based sperm sorting & analysis for treatment of male infertility. Transl Androl Urol. 2018;7(Suppl 3):S336. https://doi.org/10.21037/tau.2018.05.08.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Matsuura K, Takenami M, Kuroda Y, Hyakutake T, Yanase S, Naruse K. Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device. Reprod Biomed Online. 2012;24(1):109–15. https://doi.org/10.1016/j.rbmo.2011.09.005.

    Article  PubMed  Google Scholar 

  66. Rappa KL, Rodriguez HF, Hakkarainen GC, Anchan RM, Mutter GL, Asghar W. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol Adv. 2016;34(5):578–87. https://doi.org/10.1016/j.biotechadv.2016.01.007.

    Article  PubMed  Google Scholar 

  67. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25(10):2415–26. https://doi.org/10.1093/humrep/deq214.

    Article  CAS  PubMed  Google Scholar 

  68. Matsuura K, Uozumi T, Furuichi T, Sugimoto I, Kodama M, Funahashi H. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. Fertil Steril. 2013;99(2):400–7. https://doi.org/10.1016/j.fertnstert.2012.10.022.

    Article  PubMed  Google Scholar 

  69. Kiratli S, Yuncu M, Kose K, Ozkavukcu S. A comparative evaluation of migration sedimentation method for sperm preparation. Syst Biol Reprod Med. 2018;64(2):122–9. https://doi.org/10.1080/19396368.2017.1402100.

    Article  CAS  PubMed  Google Scholar 

  70. Henkel RR, Schill WB. Sperm preparation for ART. Reprod Biol Endocrinol. 2003;1(1):108. https://doi.org/10.1186/1477-7827-1-108.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nasr-Esfahani MH, Marziyeh T. Sperm selection based on surface electrical charge. In: Agarwal A, Borges Jr E, Setti A, editors. Non-invasive sperm selection for in vitro fertilization. New York, NY: Springer; 2015. 41–50. https://doi.org/10.1007/978-1-4939-1411-1_4

  72. Oehninger SC, Kotze D. Sperm binding to the zona pellucida, hyaluronic acid binding assay, and PICSI. In: Agarwal A, Borges Jr E, Setti A, editors. Non-invasive sperm selection for in vitro fertilization. New York, NY: Springer; 2015. 59–68. https://doi.org/10.1007/978-1-4939-1411-1_6

  73. Manuel TJ, Maria Jose M, Adriana Maria C, Carlos Z, Estela MP. Use of annexin V based sperm selection in assisted reproduction. Andrology. 2017;6(1):1000182. https://doi.org/10.4172/2167-0250.1000182.

    Article  Google Scholar 

  74. Toishibekov Y, Baikoshkarova S, Assanova Y, Otarbayev M, Komogortsev A, Nekhorosheva V, et al. 8 Effects of magnetic-activated cell sorting on human sperm motility and DNA fragmentation index. Reprod Fertil Dev. 2021;33(2):111–211. https://doi.org/10.1071/RDv33n2Ab8.

    Article  Google Scholar 

  75. Sousa AP, Amaral A, Baptista M, Tavares R, Caballero Campo P, Caballero Peregrín P, et al. Not all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PLoS ONE. 2011;6(3):e18112. https://doi.org/10.1371/journal.pone.0018112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garolla A, Bottacin A, Cosci I, Menegazzo M, Foresta C. The relevance in reproductive success of sperm head polarization (birefringence). In: A Practical Guide to Sperm Analysis: CRC Press; 2017. 211–22

  77. Franco JG. Motile sperm organelle morphology examination (MSOME). In: Agarwal A, Borges Jr E, Setti A, editors. Non-invasive sperm selection for in vitro fertilization. New York, NY: Springer; 2015. 81–90. https://doi.org/10.1007/978-1-4939-1411-1_8

  78. Marzano G, Chiriaco MS, Primiceri E, Dell’Aquila ME, Ramalho-Santos J, Zara V, et al. Sperm selection in assisted reproduction: a review of established methods and cutting-edge possibilities. Biotechnol Adv. 2020;40:107498. https://doi.org/10.1016/j.biotechadv.2019.107498.

    Article  PubMed  Google Scholar 

  79. Yata VK. Microfluidic and non-microfluidic methods of sperm sorting and sperm analysis. In: Microfluidics for assisted reproduction in animals. Singapore: Springer; 2021. 35–50. https://doi.org/10.1007/978-981-33-4876-9_3

  80. Khodamoradi M, Rafizadeh Tafti S, Mousavi Shaegh SA, Aflatoonian B, Azimzadeh M, Khashayar P. Recent microfluidic innovations for sperm sorting. Chemosensors. 2021;9(6):126. https://doi.org/10.3390/chemosensors9060126.

    Article  CAS  Google Scholar 

  81. Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm research. Trends Biotechnol. 2015;33(4):221–9. https://doi.org/10.1016/j.tibtech.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  82. Kantsler V, Dunkel J, Blayney M, Goldstein RE. Rheotaxis facilitates upstream navigation of mammalian sperm cells. Elife. 2014;3:e02403. https://doi.org/10.7554/eLife.02403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zaferani M, Javi F, Mokhtare A, Abbaspourrad A. Effect of flagellar beating pattern on sperm rheotaxis and boundary-dependent navigation. BioRxiv. 2020. https://doi.org/10.1101/2020.01.20.913145.

    Article  Google Scholar 

  84. Nishina S, Matsuura K, Naruse K. Spiral trajectory modulation of rheotaxic motile human sperm in cylindrical microfluidic channels of different inner diameters. Acta Med Okayama. 2019;73(3):213–21. https://doi.org/10.18926/AMO/56863.

    Article  CAS  PubMed  Google Scholar 

  85. El-Sherry TM, Elsayed M, Abdelhafez HK, Abdelgawad M. Characterization of rheotaxis of bull sperm using microfluidics. Integr Biol. 2014;6(12):1111–21. https://doi.org/10.1039/c4ib00196f.

    Article  Google Scholar 

  86. Bukatin A, Kukhtevich I, Stoop N, Dunkel J, Kantsler V. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc Natl Acad Sci USA. 2015;112(52):15904–9. https://doi.org/10.1073/pnas.1515159112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu JK, Chen PC, Lin YN, Wang CW, Pan LC, Tseng FG. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst. 2017;142(6):938–44. https://doi.org/10.1039/c6an02420c.

    Article  CAS  PubMed  Google Scholar 

  88. Tung CK, Ardon F, Fiore AG, Suarez SS, Wu M. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip. 2014;14(7):1348–56. https://doi.org/10.1039/c3lc51297e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zaferani M, Cheong SH, Abbaspourrad A. Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc Natl Acad Sci USA. 2018;115(33):8272–7. https://doi.org/10.1073/pnas.1800819115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. El-sherry T, Abdel-Ghani M, Abou-Khalil N, Elsayed M, Abdelgawad M. Effect of pH on rheotaxis of bull sperm using microfluidics. Reprod Domest Anim. 2017;52(5):781–90. https://doi.org/10.1111/rda.12979.

    Article  CAS  PubMed  Google Scholar 

  91. Seo D-b, Agca Y, Feng Z, Critser JK. Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid Nanofluidics 2007 3(5):561–70. https://doi.org/10.1007/s10404-006-0142-3

  92. Nagata MPB, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, et al. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proc Natl Acad Sci USA. 2018;115(14):E3087–96. https://doi.org/10.1073/pnas.1717974115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma R, Xie L, Han C, Su K, Qiu T, Wang L, et al. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem. 2011;83(8):2964–70. https://doi.org/10.1021/ac103063g.

    Article  CAS  PubMed  Google Scholar 

  94. Magdanz V, Koch B, Sanchez S, Schmidt OG. Sperm dynamics in tubular confinement. Small. 2015;11(7):781–5. https://doi.org/10.1002/smll.201401881.

    Article  CAS  PubMed  Google Scholar 

  95. Kantsler V, Dunkel J, Polin M, Goldstein RE. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc Natl Acad Sci USA. 2013;110(4):1187–92. https://doi.org/10.1073/pnas.1210548110.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J. Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc Natl Acad Sci USA. 2012;109(21):8007–10. https://doi.org/10.1073/pnas.1202934109.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ditsayabut P, Pongsena W, Promsawat N, Makbun K, Kupittayanant P, Janphuang P, et al. Investigating the factors affecting the outcomes of the sperm sorting with microfluidic devices. Biomed Phys Eng Express. 2018;4(6):065016. https://doi.org/10.1088/2057-1976/aadd27.

    Article  Google Scholar 

  98. Eamer L, Vollmer M, Nosrati R, San Gabriel MC, Zeidan K, Zini A, et al. Turning the corner in fertility: high DNA integrity of boundary-following sperm. Lab Chip. 2016;16(13):2418–22. https://doi.org/10.1039/c6lc00490c.

    Article  CAS  PubMed  Google Scholar 

  99. Kashaninejad N, Shiddiky MJA, Nguyen NT. Advances in microfluidics-based assisted reproductive technology: from sperm sorter to reproductive system-on-a-chip. Adv Biosyst. 2018;2(3):1700197. https://doi.org/10.1002/adbi.201700197.

    Article  Google Scholar 

  100. Tasoglu S, Safaee H, Zhang X, Kingsley JL, Catalano PN, Gurkan UA, et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small. 2013;9(20):3374–84. https://doi.org/10.1002/smll.201300020.

    Article  CAS  PubMed  Google Scholar 

  101. Nosrati R, Vollmer M, Eamer L, San Gabriel MC, Zeidan K, Zini A, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):1142–50. https://doi.org/10.1039/c3lc51254a.

    Article  CAS  PubMed  Google Scholar 

  102. Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7(1):75–81. https://doi.org/10.1016/S1472-6483(10)61732-4.

    Article  PubMed  Google Scholar 

  103. Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671–5. https://doi.org/10.1021/ac020579e.

    Article  CAS  PubMed  Google Scholar 

  104. Huang H-Y, Wu T-L, Huang H-R, Li C-J, Fu H-T, Soong Y-K, et al. Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel. J Lab Autom. 2014;19(1):91–9. https://doi.org/10.1177/2211068213486650.

    Article  CAS  PubMed  Google Scholar 

  105. Shibata D, Ando H, Iwase A, Harata T, Kikkawa F, Naruse K. Analysis of sperm motility and fertilization rates after the separation by microfluidic sperm sorter made of quartz. Fertil Steril. 2007;88:S110. https://doi.org/10.1016/j.fertnstert.2007.07.358.

    Article  Google Scholar 

  106. Huang H-Y, Fu H-T, Tsing H-Y, Huang H-J, Li C-J, Yao D-J. Motile human sperm sorting by an integrated microfluidic system. J Nanomed Nanotechnol. 2014;5(3):1. https://doi.org/10.4172/2157-7439.1000199.

    Article  Google Scholar 

  107. Wu JM, Chung Y, Belford KJ, Smith GD, Takayama S, Lahann J. A surface-modified sperm sorting device with long-term stability. Biomed Microdevices. 2006;8(2):99–107. https://doi.org/10.1007/s10544-006-7705-7.

    Article  PubMed  Google Scholar 

  108. Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315–21 e1. https://doi.org/10.1016/j.fertnstert.2015.10.023

  109. Huang H-Y, Huang P-W, Yao D-J. Enhanced efficiency of sorting sperm motility utilizing a microfluidic chip. Microsyst Technol. 2017;23(2):305–12. https://doi.org/10.1007/s00542-015-2495-6.

    Article  CAS  Google Scholar 

  110. Eamer L, Nosrati R, Vollmer M, Zini A, Sinton D. Microfluidic assessment of swimming media for motility-based sperm selection. Biomicrofluidics. 2015;9(4):044113. https://doi.org/10.1063/1.4928129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kamimura Y, Cai H, Devreotes PN. TORC2 and chemotaxis in Dictyostelium discoideum. In: The Enzymes: Academic Press; 2010. 125–42. https://doi.org/10.1016/S1874-6047(10)28006-X

  112. Kaupp UB. 100 years of sperm chemotaxis. J Gen Physiol. 2012;140(6):583–6. https://doi.org/10.1085/jgp.201210902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Walensky LD, Roskams AJ, Lefkowitz RJ, Snyder SH, Ronnett GV. Odorant receptors and desensitization proteins colocalize in mammalian sperm. Mol Med. 1995;1(2):130–41. https://doi.org/10.1007/BF03401561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M. Olfactory receptors are displayed on dog mature sperm cells. J Cell Biol. 1993;123(6 Pt 1):1441–52. https://doi.org/10.1083/jcb.123.6.1441.

    Article  CAS  PubMed  Google Scholar 

  115. Fukuda N, Yomogida K, Okabe M, Touhara K. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J Cell Sci. 2004;117(Pt 24):5835–45. https://doi.org/10.1242/jcs.01507.

    Article  CAS  PubMed  Google Scholar 

  116. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science. 2003;299(5615):2054–8. https://doi.org/10.1126/science.1080376.

    Article  CAS  PubMed  Google Scholar 

  117. Berendsen JTW, Kruit SA, Atak N, Willink E, Segerink LI. Flow-free microfluidic device for quantifying chemotaxis in spermatozoa. Anal Chem. 2020;92(4):3302–6. https://doi.org/10.1021/acs.analchem.9b05183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eisenbach M. Sperm chemotaxis. Rev Reprod. 1999;4(1):56–66. https://doi.org/10.1530/revreprod/4.1.56.

    Article  CAS  PubMed  Google Scholar 

  119. Koyama S, Amarie D, Soini HA, Novotny MV, Jacobson SC. Chemotaxis assays of mouse sperm on microfluidic devices. Anal Chem. 2006;78(10):3354–9. https://doi.org/10.1021/ac052087i.

    Article  CAS  PubMed  Google Scholar 

  120. Ko Y-J, Maeng J-H, Lee B-C, Lee S, Hwang SY, Ahn Y. Separation of progressive motile sperm from mouse semen using on-chip chemotaxis. Anal Sci. 2012;28(1):27–27. https://doi.org/10.2116/analsci.28.27.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y, Xiao RR, Yin T, Zou W, Tang Y, Ding J, et al. Generation of gradients on a microfluidic device: toward a high-throughput investigation of spermatozoa chemotaxis. PLoS ONE. 2015;10(11):e0142555. https://doi.org/10.1371/journal.pone.0142555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bhagwat S, Sontakke S, Parte P, Jadhav S. Chemotactic behavior of spermatozoa captured using a microfluidic chip. Biomicrofluidics. 2018;12(2):024112. https://doi.org/10.1063/1.5023574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hussain YH, Guasto JS, Zimmer RK, Stocker R, Riffell JA. Sperm chemotaxis promotes individual fertilization success in sea urchins. J Exp Biol. 2016;219(Pt 10):1458–66. https://doi.org/10.1242/jeb.134924.

    Article  PubMed  Google Scholar 

  124. Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem. 2010;56(8):1270–8. https://doi.org/10.1373/clinchem.2010.146902.

    Article  CAS  PubMed  Google Scholar 

  125. Bahat A, Eisenbach M. Sperm thermotaxis. Mol Cell Endocrinol. 2006;252(1–2):115–9. https://doi.org/10.1016/j.mce.2006.03.027.

    Article  CAS  PubMed  Google Scholar 

  126. Li Z, Liu W, Qiu T, Xie L, Chen W, Liu R, et al. The construction of an interfacial valve-based microfluidic chip for thermotaxis evaluation of human sperm. Biomicrofluidics. 2014;8(2):024102. https://doi.org/10.1063/1.4866851.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ko YJ, Maeng JH, Hwang SY, Ahn Y. Design, fabrication, and testing of a microfluidic device for thermotaxis and chemotaxis assays of sperm. SLAS Technol. 2018;23(6):507–15. https://doi.org/10.1177/2472630318783948.

    Article  PubMed  Google Scholar 

  128. Son J, Samuel R, Gale BK, Carrell DT, Hotaling JM. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics. 2017;11(5):054106. https://doi.org/10.1063/1.4994548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Son J, Murphy K, Samuel R, Gale BK, Carrell DT, Hotaling JM. Non-motile sperm cell separation using a spiral channel. Anal Methods. 2015;7(19):8041–7. https://doi.org/10.1039/C5AY02205C.

    Article  Google Scholar 

  130. Horsman KM, Barker SL, Ferrance JP, Forrest KA, Koen KA, Landers JP. Separation of sperm and epithelial cells in a microfabricated device: potential application to forensic analysis of sexual assault evidence. Anal Chem. 2005;77(3):742–9. https://doi.org/10.1021/ac0486239.

    Article  CAS  PubMed  Google Scholar 

  131. Liu W, Chen W, Liu R, Ou Y, Liu H, Xie L, et al. Separation of sperm and epithelial cells based on the hydrodynamic effect for forensic analysis. Biomicrofluidics. 2015;9(4):044127. https://doi.org/10.1063/1.4928453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Samuel R, Son J, Jenkins TG, Jafek A, Feng H, Gale BK, et al. Microfluidic system for rapid isolation of sperm from microdissection TESE specimens. Urology. 2020;140:70–6. https://doi.org/10.1016/j.urology.2019.12.053.

    Article  PubMed  Google Scholar 

  133. Asghar W, Velasco V, Kingsley JL, Shoukat MS, Shafiee H, Anchan RM, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3(10):1671–9. https://doi.org/10.1002/adhm.201400058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Behr B, Demirci U. Microfluidic sperm sorting device for selection of functional human sperm for IUI application. Fertil Steril. 2016;105(2):e17–8. https://doi.org/10.1016/j.fertnstert.2015.12.063.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nima Ahmadkhani: The idea for the article, performed the literature search, and drafted the work.

Mahshid Hosseini: The idea for the article, performed the literature search, and drafted the work.

Maryam Saadatmand: Guided the research and revised the manuscript.

Alireza Abbaspourrad: Revised the final manuscript.

Corresponding author

Correspondence to Maryam Saadatmand.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2499 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadkhani, N., Hosseini, M., Saadatmand, M. et al. The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices. J Assist Reprod Genet 39, 19–36 (2022). https://doi.org/10.1007/s10815-021-02377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02377-w

Keywords

Navigation