Skip to main content

Advertisement

Log in

Protective placental inflammatory and oxidative stress responses are attenuated in the context of twin pregnancy and chorioamnionitis in assisted reproduction

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Assisted reproduction technologies (ART) are associated with increased risks of pregnancy complications and obstetric interventions. Here, we aimed to determine if ART affects placental inflammation and oxidative stress as a mechanism for unfavorable pregnancy outcomes.

Methods

The levels of six cytokines (IFN-γ, IL-1β, IL-6, IL-8, IL-10, TNFα) were measured using multiplex ELISA. The activity of four antioxidant enzymes (glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase, superoxide dismutase) and levels of two antioxidants (GSH, vitamin E) were measured using commercial/in-house assays. Markers were compared between ART and unassisted pregnancies, and then groups were stratified using ICD9/10 codes to determine differences in specific clinical contexts.

Results

In unassisted twin pregnancies, there was a trend of decreased cytokine levels (IL-1β, IL-6, IL-8, TNFα, p < 0.05), but cytokines in ART twins were the same or higher. Additionally, GST and GPx activities were lower in unassisted twins, and vitamin E levels were higher in ART twins (p < 0.05). In pregnancies complicated by chorioamnionitis, there was a trend of increased cytokine levels in unassisted pregnancies (IL-1β, IL-6, and IL-8, p < 0.05). No increase was observed in ART, and IFN-γ and TNFα were decreased (p < 0.05). Placental GST and GPx activities were higher in unassisted pregnancies with chorioamnionitis compared to ART (p < 0.05).

Conclusion

Attenuation of protective placental inflammatory and oxidative stress responses may play a role in the underlying pathogenesis of negative birth outcomes in ART, expanding our understanding of adverse pregnancy outcomes when ART is used to conceive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available upon request.

Code availability

N/A.

References

  1. Kurjak A, Carrera JM. Declining fertility in the developed world and high maternal mortality in developing countries – how do we respond? J Perinat Med. 2005;33(2):95–9. https://doi.org/10.1515/JPM.2005.017.

    Article  PubMed  Google Scholar 

  2. Sunderam S, et al. Assisted reproductive technology surveillance – United States, 2014. MMWR Surveill Summ. 2017;66(6):1–24. https://doi.org/10.15585/mmwr.ss6606a1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ross LE, et al. "Sexual and gender minority peoples’ recommendations for assisted human reproduction services," (in eng). J Obstet Gynaecol Can. 2014;36(2):146–53. https://doi.org/10.1016/s1701-2163(15)30661-7.

    Article  PubMed  Google Scholar 

  4. Allen VM, Wilson RD, Cheung A, Genetics C, Reproductive E, Infertility C. Pregnancy outcomes after assisted reproductive technology. J Obstet Gynaecol Can. 2006;28(3):220–33. https://doi.org/10.1016/S1701-2163(16)32112-0.

    Article  PubMed  Google Scholar 

  5. Reddy UM, Wapner RJ, Rebar RW, Tasca RJ. Infertility, assisted reproductive technology, and adverse pregnancy outcomes: executive summary of a National Institute of Child Health and Human Development workshop. Obstet Gynecol. 2007;109(4):967–77. https://doi.org/10.1097/01.AOG.0000259316.04136.30.

    Article  PubMed  Google Scholar 

  6. Shevell T, et al. Assisted reproductive technology and pregnancy outcome. Obstet Gynecol. 2005;106(5 Pt 1):1039–45. https://doi.org/10.1097/01.AOG.0000183593.24583.7c.

    Article  PubMed  Google Scholar 

  7. Kallen B, Finnstrom O, Nygren KG, Otterblad Olausson P, Wennerholm UB. In vitro fertilisation in Sweden: obstetric characteristics, maternal morbidity and mortality. BJOG. 2005;112(11):1529–35. https://doi.org/10.1111/j.1471-0528.2005.00745.x.

    Article  PubMed  Google Scholar 

  8. Romundstad LB, Romundstad PR, Sunde A, von During V, Skjaerven R, Vatten LJ. Increased risk of placenta previa in pregnancies following IVF/ICSI; a comparison of ART and non-ART pregnancies in the same mother. Hum Reprod. 2006;21(9):2353–8. https://doi.org/10.1093/humrep/del153.

    Article  PubMed  Google Scholar 

  9. Rebar RW. What are the risks of the assisted reproductive technologies (ART) and how can they be minimized? Reprod Med Biol. 2013;12(4):151–8. https://doi.org/10.1007/s12522-013-0156-y.

    Article  PubMed  PubMed Central  Google Scholar 

  10. W. Ombelet, G. Martens, and L. Bruckers, "Pregnant after assisted reproduction: a risk pregnancy is born! 18-years perinatal outcome results from a population-based registry in Flanders, Belgium," Facts Views Vis Obgyn, 8 4 193–204 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/28210479.

  11. Klitzman R. “Deciding how many embryos to transfer: ongoing challenges and dilemmas,” (in eng). Reprod Biomed Soc Online. 2016;3:1–15. https://doi.org/10.1016/j.rbms.2016.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sunderam S, et al. “Assisted reproductive technology surveillance – United States, 2016,” (in eng). MMWR Surveill Summ. 2019;68(4):1–23. https://doi.org/10.15585/mmwr.ss6804a1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sunderam S, et al. “Assisted reproductive technology surveillance – United States, 2017,” (in eng). MMWR Surveill Summ. 2020;69(9):1–20. https://doi.org/10.15585/mmwr.ss6909a1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gavriil P, Jauniaux E, Leroy F. Pathologic examination of placentas from singleton and twin pregnancies obtained after in vitro fertilization and embryo transfer. Pediatr Pathol. 1993;13(4):453–62. https://doi.org/10.3109/15513819309048235.

    Article  CAS  PubMed  Google Scholar 

  15. Hustin J, Jauniaux E, Schaaps JP. “Histological study of the materno-embryonic interface in spontaneous abortion,” (in eng). Placenta. 1990;11(6):477–86. https://doi.org/10.1016/s0143-4004(05)80193-6.

    Article  CAS  PubMed  Google Scholar 

  16. Haavaldsen C, Tanbo T, Eskild A. Placental weight in singleton pregnancies with and without assisted reproductive technology: a population study of 536,567 pregnancies. Hum Reprod. 2012;27(2):576–82. https://doi.org/10.1093/humrep/der428.

    Article  CAS  PubMed  Google Scholar 

  17. Turpin CA, Sakyi SA, Owiredu WK, Ephraim RK, Anto EO. “Association between adverse pregnancy outcome and imbalance in angiogenic regulators and oxidative stress biomarkers in gestational hypertension and preeclampsia,” (in eng). BMC Pregnancy Childbirth. 2015;15(189):25. https://doi.org/10.1186/s12884-015-0624-y.

    Article  CAS  Google Scholar 

  18. Menon R, Richardson LS. “Preterm prelabor rupture of the membranes: a disease of the fetal membranes,” (in eng). Semin Perinatol. 2017;41(7):409–19. https://doi.org/10.1053/j.semperi.2017.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221:80–7. https://doi.org/10.1111/j.1749-6632.2010.05938.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duhig K, Chappell LC, Shennan AH. Oxidative stress in pregnancy and reproduction. Obstet Med. 2016;9(3):113–6. https://doi.org/10.1177/1753495X16648495.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chiarello DI, et al. “Oxidative stress: normal pregnancy versus preeclampsia,” (in eng). Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165354. https://doi.org/10.1016/j.bbadis.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  22. Myatt L, Cui X. “Oxidative stress in the placenta,” (in eng). Histochem Cell Biol. 2004;122(4):369–82. https://doi.org/10.1007/s00418-004-0677-x.

    Article  CAS  PubMed  Google Scholar 

  23. Evans L, Myatt L. “Sexual dimorphism in the effect of maternal obesity on antioxidant defense mechanisms in the human placenta,” (in eng). Placenta. 2017;51:64–9. https://doi.org/10.1016/j.placenta.2017.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marín R, Chiarello DI, Abad C, Rojas D, Toledo F, Sobrevia L. “Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia,” (in eng). Biochim Biophys Acta Mol Basis Dis. 2020;1866(12):165961. https://doi.org/10.1016/j.bbadis.2020.165961.

    Article  CAS  PubMed  Google Scholar 

  25. Fisher JJ, Bartho LA, Perkins AV, Holland OJ. “Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy,” (in eng). Clin Exp Pharmacol Physiol. 2020;47(1):176–84. https://doi.org/10.1111/1440-1681.13172.

    Article  CAS  PubMed  Google Scholar 

  26. Sarina, et al. “Mechanism of placenta damage in gestational diabetes mellitus by investigating TXNIP of patient samples and gene functional research in cell line,” (in eng). Diabetes Ther. 2019;10(6):2265–88. https://doi.org/10.1007/s13300-019-00713-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D’Souza V, et al. “Increased oxidative stress from early pregnancy in women who develop preeclampsia,” (in eng). Clin Exp Hypertens. 2016;38(2):225–32. https://doi.org/10.3109/10641963.2015.1081226.

    Article  CAS  PubMed  Google Scholar 

  28. Biri A, Onan A, Devrim E, Babacan F, Kavutcu M, Durak I. “Oxidant status in maternal and cord plasma and placental tissue in gestational diabetes,” (in eng). Placenta. 2006;27(2–3):327–32. https://doi.org/10.1016/j.placenta.2005.01.002.

    Article  CAS  PubMed  Google Scholar 

  29. Raunig JM, Yamauchi Y, Ward MA, Collier AC. Assisted reproduction technologies alter steroid delivery to the mouse fetus during pregnancy. J Steroid Biochem Mol Biol. 2011;126(1–2):26–34. https://doi.org/10.1016/j.jsbmb.2010.12.012.

    Article  CAS  PubMed  Google Scholar 

  30. Orief Y, Dafopoulos K, Al-Hassani S. “Should ICSI be used in non-male factor infertility?,” (in eng). Reprod Biomed Online. 2004;9(3):348–56. https://doi.org/10.1016/s1472-6483(10)62152-9.

    Article  PubMed  Google Scholar 

  31. Devroey P, Van Steirteghem A. “A review of ten years experience of ICSI,” (in eng). Hum Reprod Update. 2004;10(1):19–28. https://doi.org/10.1093/humupd/dmh004.

    Article  CAS  PubMed  Google Scholar 

  32. Rubino P, Viganò P, Luddi A, Piomboni P. “The ICSI procedure from past to future: a systematic review of the more controversial aspects,” (in eng). Hum Reprod Update. 2016;22(2):194–227. https://doi.org/10.1093/humupd/dmv050.

    Article  PubMed  Google Scholar 

  33. Novakovic B, et al. Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat Commun. 2019;10(1):3922. https://doi.org/10.1038/s41467-019-11929-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. “Epigenetic changes and assisted reproductive technologies,” (in eng). Epigenetics. 2020;15(1–2):12–25. https://doi.org/10.1080/15592294.2019.1646572.

    Article  PubMed  Google Scholar 

  35. von Versen-Höynck F, et al. “Absent or excessive corpus luteum number is associated with altered maternal vascular health in early pregnancy,” (in eng). Hypertension. 2019;73(3):680–90. https://doi.org/10.1161/hypertensionaha.118.12046.

    Article  Google Scholar 

  36. Wright TE, Milam KA, Rougee L, Tanaka MD, Collier AC. Agreement of umbilical cord drug and cotinine levels with maternal self-report of drug use and smoking during pregnancy. J Perinatol. 2011;31(5):324–9. https://doi.org/10.1038/jp.2010.132.

    Article  CAS  PubMed  Google Scholar 

  37. Smith PK, et al. “Measurement of protein using bicinchoninic acid,” (in eng). Anal Biochem. 1985;150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7.

    Article  CAS  PubMed  Google Scholar 

  38. Habig WH, Pabst MJ, Jakoby WB. “Glutathione S-transferases. The first enzymatic step in mercapturic acid formation,” (in eng). J Biol Chem. 1974;249(22):7130–9.

    Article  CAS  Google Scholar 

  39. González P, Tuñón MJ, Manrique V, Garcia-Pardo LA, González J. “Changes in hepatic cytosolic glutathione S-transferase enzymes induced by clotrimazole treatment in rats,” (in eng). Clin Exp Pharmacol Physiol. 1989;16(11):867–71. https://doi.org/10.1111/j.1440-1681.1989.tb01526.x.

    Article  PubMed  Google Scholar 

  40. Tütem E, Apak R, Günaydı E, Sözgen K. “Spectrophotometric determination of vitamin E (alpha-tocopherol) using copper(II)-neocuproine reagent,” (in eng). Talanta. 1997;44(2):249–55. https://doi.org/10.1016/s0039-9140(96)02041-3.

    Article  PubMed  Google Scholar 

  41. Racicot K, Kwon JY, Aldo P, Silasi M, Mor G. “Understanding the complexity of the immune system during pregnancy,” (in eng). Am J Reprod Immunol. 2014;72(2):107–16. https://doi.org/10.1111/aji.12289.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Plevyak M, et al. “Deficiency of decidual IL-10 in first trimester missed abortion: a lack of correlation with the decidual immune cell profile,” (in eng). Am J Reprod Immunol. 2002;47(4):242–50. https://doi.org/10.1034/j.1600-0897.2002.01060.x.

    Article  PubMed  Google Scholar 

  43. Murphy SP, Fast LD, Hanna NN, Sharma S. “Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice,” (in eng). J Immunol. 2005;175(6):4084–90. https://doi.org/10.4049/jimmunol.175.6.4084.

    Article  CAS  PubMed  Google Scholar 

  44. Robertson SA, Skinner RJ, Care AS. Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice. J Immunol. 2006;177(7):4888–96. https://doi.org/10.4049/jimmunol.177.7.4888.

    Article  CAS  PubMed  Google Scholar 

  45. Röth E, et al. “Effect of a glutathione S-transferase inhibitor on oxidative stress and ischemia-reperfusion-induced apoptotic signalling of cultured cardiomyocytes,” (in eng). Exp Clin Cardiol. 2011;16(3):92–6.

    PubMed  PubMed Central  Google Scholar 

  46. Sozzani S, Bosisio D, Mantovani A, Ghezzi P. “Linking stress, oxidation and the chemokine system,” (in eng). Eur J Immunol. 2005;35(11):3095–8. https://doi.org/10.1002/eji.200535489.

    Article  CAS  PubMed  Google Scholar 

  47. Sánchez-Gómez FJ, Díez-Dacal B, García-Martín E, Agúndez JA, Pajares MA, Pérez-Sala D. “Detoxifying enzymes at the cross-roads of inflammation, oxidative stress, and drug hypersensitivity: role of glutathione transferase P1–1 and aldose reductase,” (in eng). Front Pharmacol. 2016;7:237. https://doi.org/10.3389/fphar.2016.00237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. Gerris, "Single-embryo transfer versus multiple-embryo transfer," Reprod Biomed Online, vol. 18 Suppl 2, pp. 63–70, 2009. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/19406034.

  49. Almasi-Hashiani A, et al. Assisted reproductive technology and the risk of preeclampsia: an updated systematic review and meta-analysis. BMC Pregnancy Childbirth. 2019;19(1):149. https://doi.org/10.1186/s12884-019-2291-x.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Udell JA, Lu H, Redelmeier DA. Failure of fertility therapy and subsequent adverse cardiovascular events. CMAJ. 2017;189(10):E391–7. https://doi.org/10.1503/cmaj.160744.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen CW, Jaffe IZ, Karumanchi SA. Pre-eclampsia and cardiovascular disease. Cardiovasc Res. 2014;101(4):579–86. https://doi.org/10.1093/cvr/cvu018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ikemoto Y, et al. Prevalence and risk factors of zygotic splitting after 937 848 single embryo transfer cycles. Hum Reprod. 2018;33(11):1984–91. https://doi.org/10.1093/humrep/dey294.

    Article  CAS  PubMed  Google Scholar 

  53. Tita AT, Andrews WW. Diagnosis and management of clinical chorioamnionitis. Clin Perinatol. 2010;37(2):339–54. https://doi.org/10.1016/j.clp.2010.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  54. J. Ladner et al., "Chorioamnionitis and pregnancy outcome in HIV-infected African women. Pregnancy and HIV study group," J Acquir Immune Defic Syndr Hum Retrovirol, vol. 18, no. 3, pp. 293–8, Jul 1 1998. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/9665509.

  55. Kim B, Oh SY, Kim JS. Placental lesions in meconium aspiration syndrome. J Pathol Transl Med. 2017;51(5):488–98. https://doi.org/10.4132/jptm.2017.07.20.

    Article  PubMed  PubMed Central  Google Scholar 

  56. M. Abele-Horn, M. Scholz, C. Wolff, and M. Kolben, "High-density vaginal Ureaplasma urealyticum colonization as a risk factor for chorioamnionitis and preterm delivery," Acta Obstet Gynecol Scand, vol. 79, no. 11, pp. 973–8, Nov 2000. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/11081683.

  57. Fettweis JM, et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology. 2014;160(Pt 10):2272–82. https://doi.org/10.1099/mic.0.081034-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kemp MW. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol. 2014;5:574. https://doi.org/10.3389/fimmu.2014.00574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kallapur SG, Presicce P, Rueda CM, Jobe AH, Chougnet CA. Fetal immune response to chorioamnionitis. Semin Reprod Med. 2014;32(1):56–67. https://doi.org/10.1055/s-0033-1361823.

    Article  PubMed  PubMed Central  Google Scholar 

  60. D. D. Briana and A. Malamitsi-Puchner, 2021 "Chorioamnionitis in utero, schizophrenia in adulthood: limited current evidence-future research focus?," (in eng), J Matern Fetal Neonatal Med 1–6 https://doi.org/10.1080/14767058.2020.1863370.

  61. Temma K, et al. “Effects of 4-hydroxy-2-nonenal, a marker of oxidative stress, on the cyclooxygenase-2 of human placenta in chorioamnionitis,” (in eng). Mol Hum Reprod. 2004;10(3):167–71. https://doi.org/10.1093/molehr/gah030.

    Article  CAS  PubMed  Google Scholar 

  62. Yang R, et al. “Human trophoblast cell during first trimester after IVF-ET differs from natural conceived pregnancy in development and function,” (in eng). Histol Histopathol. 2017;32(3):243–51. https://doi.org/10.14670/hh-11-787.

    Article  CAS  PubMed  Google Scholar 

  63. Knight SJ, Smith AD, Kim H, Collier AC. Human placental suppressors of cytokine signalling (SOCS) are dysregulated in assisted reproduction, advanced maternal age and pre-term birth. Clin Exp Obstet Gynecol. 2020;4(2):277–86.

    Google Scholar 

Download references

Funding

The Hawaii Biorepository was funded by the National Institutes of Health (USA) [RMATRIX—U54MD007584]. This work was funded in part by a CIHR Clinician-Scientist Salary Award [MC2-127872] (Hugh Kim), a Michael Smith Foundation for Health Research (MSFHR) Scholar Award (Hugh Kim), a joint seed grant from the Faculties of Dentistry and Pharmaceutical Sciences at the University of British Columbia (Hugh Kim and Abby Collier), a DSECT Training Program Grant [DSN-143585], and a CIHR Doctoral Fellowship [GSD-167041] (Hayley Price).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abby C. Collier.

Ethics declarations

Ethics approval

This study was performed in line with the principles in the Declaration of Helsinki. Approval was granted by the Ethics Committee of The University of British Columbia (H14-00092).

Consent to participate

The human samples used in this project were collected at birth, with informed consent from patients for inclusion of their tissues into the Hawaii Biorepository, including consent for future investigation after anonymization and de-identification.

Consent for publication

Consent for inclusion of tissues into the Hawaii Biorepository included consent for future investigations and publications.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, H.R., Pang, N., Kim, H. et al. Protective placental inflammatory and oxidative stress responses are attenuated in the context of twin pregnancy and chorioamnionitis in assisted reproduction. J Assist Reprod Genet 39, 227–238 (2022). https://doi.org/10.1007/s10815-021-02371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02371-2

Keywords

Navigation