Skip to main content

Advertisement

Log in

The integrity of cfDNA in follicular fluid and spent medium from embryo culture is associated with embryo grade in patients undergoing in vitro fertilization

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted to verify if the cfDNA integrity (cfDI) in follicular fluid and subsequent spent embryo medium (SEM) could serve as potential non-invasive biomarker for high-grade embryo selection during IVF/ICSI.

Methods

Thirty-two follicular fluids, 32 subsequent corresponding cleavage embryo SEM, and 23 subsequent blastocyst SEM were collected from 11 patients undergoing IVF/ICSI. CfDI was measured by ALU gene amplicons with different sizes by qPCR, as the ratio of long to short fragments.

Results

CfDI in follicular fluid corresponding to subsequent high-grade cleavage embryos and blastocysts was significantly lower than that related to low-grade embryos (p = 0.018). Conversely, cfDI in SEM was significantly and positively correlated with high-grade embryos at both stages (p = 0.009). ROC curves of the analysis of cfDI in follicular fluid showed great potential in predicting subsequent embryogenesis and embryo grade (AUC > 0.927). Regardless of the cleavage embryo grade by morphology, cfDI in day 3 SEM could predict if the cleavage embryo could develop to a high-grade blastocyst (AUC = 0.820). A concordant shift pattern of cfDI from follicular fluid to subsequent day 3 SEM and day 5 SEM was found in 81.82% participants featured by various clinical characteristics.

Conclusion

CfDI in follicular fluid and SEM was significantly correlated with embryogenesis and embryo grade and could serve as a potential non-invasive biomarker in high-grade embryo selection. Direct qPCR was proved as a labor-saving and sensitive method for the analysis of cfDI in low volume of SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guerif F, Le Gouge A, Giraudeau B, Poindron J, Bidault R, Gasnier O, Royere D. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod. 2007;22(7):1973–81.

    Article  CAS  Google Scholar 

  2. Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn. 2013;33(7):667–74.

    Article  CAS  Google Scholar 

  3. Galeva S, Gil MM, Konstantinidou L, Akolekar R, Nicolaides KH. First-trimester screening for trisomies by cfDNA testing of maternal blood in singleton and twin pregnancies: factors affecting test failure. Ultrasound in Obstetrics & Gynecology : the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2019;53(6):804–9.

    CAS  Google Scholar 

  4. Chan KC, Leung SF, Yeung SW, Chan AT, Lo YM. Persistent aberrations in circulating DNA integrity after radiotherapy are associated with poor prognosis in nasopharyngeal carcinoma patients. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research. 2008;14(13):4141–5.

    Article  CAS  Google Scholar 

  5. Vergouw CG, Botros LL, Roos P, Lens JW, Schats R, Hompes PG, Burns DH, Lambalk CB. Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod. 2008;23(7):1499–504.

    Article  CAS  Google Scholar 

  6. Paulson RJ. Preimplantation genetic screening: what is the clinical efficiency? Fertil Steril. 2017;108(2):228–30.

    Article  Google Scholar 

  7. Barad DH, Darmon SK, Kushnir VA, Albertini DF, Gleicher N. Impact of preimplantation genetic screening on donor oocyte-recipient cycles in the United States. Am J Obstet Gynecol. 2017;217(5):576 e571–8.

    Article  Google Scholar 

  8. Kang HJ, Melnick AP, Stewart JD, Xu K, Rosenwaks Z. Preimplantation genetic screening: who benefits? Fertil Steril. 2016;106(3):597–602.

    Article  Google Scholar 

  9. Qasemi M, Mahdian R, Amidi F. Cell-free DNA discoveries in human reproductive medicine: providing a new tool for biomarker and genetic assays in ART. J Assist Reprod Genet. 2021;38(2):277–88.

    Article  Google Scholar 

  10. Magli MC, Albanese C, Crippa A, Tabanelli C, Ferraretti AP, Gianaroli L: Deoxyribonucleic acid detection in blastocoelic fluid: a new predictor of embryo ploidy and viable pregnancy. Fertil Steril 2019, 111(1):77-85.

  11. Magli MC, Pomante A, Cafueri G, Valerio M, Crippa A, Ferraretti AP, Gianaroli L. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil Steril. 2016;105(3):676–83 e675.

    Article  Google Scholar 

  12. Tobler KJ, Zhao Y, Ross R, Benner AT, Xu X, Du L, Broman K, Thrift K, Brezina PR, Kearns WG. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25.

    Article  CAS  Google Scholar 

  13. Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013;99(4):979–97.

    Article  CAS  Google Scholar 

  14. Pearson H. Safer embryo tests could boost IVF pregnancy rates. Nature. 2006;444(7115):12–3.

    Article  CAS  Google Scholar 

  15. Scalici E, Traver S, Molinari N, Mullet T, Monforte M, Vintejoux E, Hamamah S. Cell-free DNA in human follicular fluid as a biomarker of embryo quality. Hum Reprod. 2014;29(12):2661–9.

    Article  CAS  Google Scholar 

  16. Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W, Wang H, Song X, Ma T, Bo S, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci U S A. 2016;113(42):11907–12.

    Article  CAS  Google Scholar 

  17. Belandres D, Shamonki M, Arrach N. Current status of spent embryo media research for preimplantation genetic testing. J Assist Reprod Genet. 2019;36(5):819–26.

    Article  Google Scholar 

  18. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7.

    Article  CAS  Google Scholar 

  19. Chan KC, Zhang J, Hui AB, Wong N, Lau TK, Leung TN, Lo KW, Huang DW, Lo YM. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004;50(1):88–92.

    Article  CAS  Google Scholar 

  20. Jiang P, Lo YM. The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends in Genetics : TIG. 2016;32(6):360–71.

    Article  CAS  Google Scholar 

  21. Yu SC, Lee SW, Jiang P, Leung TY, Chan KC, Chiu RW, Lo YM. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin Chem. 2013;59(8):1228–37.

    Article  CAS  Google Scholar 

  22. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. 2008;105(42):16266–71.

    Article  CAS  Google Scholar 

  23. Shi J, Zhang R, Li J. Size profile of cell-free DNA: a beacon guiding the practice and innovation of clinical testing. Theranostics. 2020;10(11):4737–48.

    Article  CAS  Google Scholar 

  24. Yu SC, Chan KC, Zheng YW, Jiang P, Liao GJ, Sun H, Akolekar R, Leung TY, Go AT, van Vugt JM, et al. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing. Proc Natl Acad Sci U S A. 2014;111(23):8583–8.

    Article  CAS  Google Scholar 

  25. Pan M, Chen P, Lu J, Liu Z, Jia E, Ge Q. The fragmentation patterns of maternal plasma cell-free DNA and its applications in non-invasive prenatal testing. Prenat Diagn. 2020;40(8):911–7.

    Article  CAS  Google Scholar 

  26. Qiao L, Yu B, Liang Y, Zhang C, Wu X, Xue Y, Shen C, He Q, Lu J, Xiang J, et al. Sequencing shorter cfDNA fragments improves the fetal DNA fraction in noninvasive prenatal testing. Am J Obstet Gynecol. 2019;221(4):345 e341–11.

    Article  Google Scholar 

  27. Konstantinos S, Petroula T, Evangelos M, Polina G, Argyro G, Sokratis G, Anna R, Andrianos N, Agni P, Michael K, et al. Assessing the practice of LuPOR for poor responders: a prospective study evaluating follicular fluid cfDNA levels during natural IVF cycles. J Assist Reprod Genet. 2020;37(5):1183–94.

    Article  Google Scholar 

  28. Latif Khan H, Bhatti S, Latif Khan Y, Abbas S, Munir Z. Rahman Khan Sherwani IA, Suhail S, Hassan Z, Aydin HH: Cell-free nucleic acids and melatonin levels in human follicular fluid predict embryo quality in patients undergoing in-vitro fertilization treatment. J Gynecol Obstet Hum Reprod. 2020;49(1):101624.

    Article  Google Scholar 

  29. Ho JR, Arrach N, Rhodes-Long K, Ahmady A, Ingles S, Chung K, Bendikson KA, Paulson RJ, McGinnis LK. Pushing the limits of detection: investigation of cell-free DNA for aneuploidy screening in embryos. Fertil Steril. 2018;110(3):467–75 e462.

    Article  CAS  Google Scholar 

  30. Liu Y, Shen Q, Zhao X, Zou M, Shao S, Li J, Ren X, Zhang L. Cell-free mitochondrial DNA in human follicular fluid: a promising bio-marker of blastocyst developmental potential in women undergoing assisted reproductive technology. Reproductive Biology and Endocrinology : RB&E. 2019;17(1):54.

    Article  Google Scholar 

  31. Sialakouma A, Karakasiliotis I, Ntala V, Nikolettos N, Asimakopoulos B. Embryonic cell-free DNA (cfDNA) in spent culture medium for aneuploidy screening and its concordance with trophoectoderm biopsy in PGT-A cycles. Hum Reprod. 2021;36(Supplement_1):i377.

    Article  Google Scholar 

  32. Franco J, Carrill, D. Alborno Riaza E, Vill Milla A, Ga Fernande-Vegue R, Soto Borras F, Vega Carrill D, Albornoz A, Martine Acera A, Buen Olalla B, Iniest Perez S, Meli Fullana E et al: Comparative analysis of non-invasive preimplantation genetic testing of aneuploidies (niPGT-A), PGT-A and IVF cycles without aneuploidy testing: preliminary results. Hum Reprod 2021, 36(Supplement_1):i392.

    Article  Google Scholar 

  33. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, Mercader A, Meseguer M, Blesa D, Moreno I, et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33(4):745–56.

    Article  CAS  Google Scholar 

  34. Behr B, Pool TB, Milki AA, Moore D, Gebhardt J, Dasig D. Preliminary clinical experience with human blastocyst development in vitro without co-culture. Hum Reprod. 1999;14(2):454–7.

    Article  CAS  Google Scholar 

  35. Umetani N, Kim J, Hiramatsu S, Reber HA, Hines OJ, Bilchik AJ, Hoon DS. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem. 2006;52(6):1062–9.

    Article  CAS  Google Scholar 

  36. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  Google Scholar 

  37. Regan SLP, Knight PG, Yovich JL, Leung Y, Arfuso F, Dharmarajan A. Granulosa cell apoptosis in the ovarian follicle-a changing view. Front Endocrinol. 2018;9:61.

    Article  Google Scholar 

  38. Lin P, Rui R. Effects of follicular size and FSH on granulosa cell apoptosis and atresia in porcine antral follicles. Mol Reprod Dev. 2010;77(8):670–8.

    Article  CAS  Google Scholar 

  39. Best CL, Pudney J, Anderson DJ, Hill JA. Modulation of human granulosa cell steroid production in vitro by tumor necrosis factor alpha: implications of white blood cells in culture. Obstet Gynecol. 1994;84(1):121–7.

    CAS  PubMed  Google Scholar 

  40. Montgomery Rice V, Limback SD, Roby KF, Terranova PF. Differential responses of granulosa cells from small and large follicles to follicle stimulating hormone (FSH) during the menstrual cycle and acyclicity: effects of tumour necrosis factor-alpha. Hum Reprod. 1998;13(5):1285–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the doctors in the Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine in the First Affiliated Hospital involved in the sample and data collection for their support in this study.

Funding

This study was supported by the National Natural Science Foundation of China (61801108) and the Natural Science Foundation of Jiangsu Province (BK20211166, BK20201148).

Author information

Authors and Affiliations

Authors

Contributions

Min Pan and Qinyu Ge led the conception and design of the study. Lingbo Cai collected the follicular fluid and SEM samples and clinical data. Min Pan and Huajuan Shi carried out the evaluation of cfDI in samples. Zhiyu Liu carried out the direct qPCR experiments. Min Pan and Qinyu Ge conducted the data analysis, construction of tables and figures, and article revision. Lingbo Cai was involved in study conception and critical revision of the article. All authors approved the final article.

Corresponding authors

Correspondence to Lingbo Cai or Qinyu Ge.

Ethics declarations

Ethics approval

Ethics approval was obtained from the Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing in 2020.

Conflict of interest

The authors declare competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, M., Shi, H., Liu, Z. et al. The integrity of cfDNA in follicular fluid and spent medium from embryo culture is associated with embryo grade in patients undergoing in vitro fertilization. J Assist Reprod Genet 38, 3113–3124 (2021). https://doi.org/10.1007/s10815-021-02357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02357-0

Keywords

Navigation