Skip to main content

Desiccated cat spermatozoa retain DNA integrity and developmental potential after prolonged storage and shipping at non-cryogenic temperatures

Abstract

Purpose

To evaluate the DNA integrity and developmental potential of microwave-dehydrated cat spermatozoa after storage at − 20 °C for different time periods and/or overnight shipping on dry ice.

Methods

Epididymal spermatozoa from domestic cats were microwave-dehydrated on coverslips after trehalose exposure. Dried samples were either assessed immediately, stored for various duration at − 20 °C, or shipped internationally on dry ice before continued storage. Dry-stored spermatozoa were rehydrated before assessing DNA integrity (TUNEL assays) or developmental potential (injection into in vitro matured oocytes followed by in vitro embryo culture for up to 7 days).

Results

Percentages of dried-rehydrated spermatozoa with intact DNA was not significantly affected (P > 0.05) by desiccation and short-term storage (range, 78.9 to 80.0%) but decreased (P < 0.05) with storage over 5 months (range, 71.0 to 75.2%) compared to fresh controls (92.6 ± 2.2%). After oocyte injection with fresh or dried-rehydrated spermatozoa (regardless of storage time), percentages of activation, pronuclear formation, and embryo development were similar (P > 0.05). Importantly, spermatozoa shipped internationally also retained the ability to support embryo development up to the morula stage.

Conclusion

Results demonstrated the possibility to sustain DNA integrity and developmental potential of spermatozoa by dry-preservation, even after long-term storage and long-distance shipment at non-cryogenic temperatures. While further studies are warranted, present results demonstrate that dry preservation can be a reliable approach for simple and cost-effective sperm biobanking or shipment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

N/A.

Code availability

N/A.

References

  1. Comizzoli P. Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J Androl. 2015;17(4):640–5. https://doi.org/10.4103/1008-682X.153849.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bielanski A, Vajta G. Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. Hum Reprod. 2009;24(10):2457–67. https://doi.org/10.1093/humrep/dep117.

    CAS  Article  PubMed  Google Scholar 

  3. Patrick J, Comizzoli P, Elliott G. Dry preservation of spermatozoa: considerations for different species. Biopreserv Biobank. 2017;15(2):158–68. https://doi.org/10.1089/bio.2016.0087.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Zafar MI, Lu S, Li H. Sperm-oocyte interplay: an overview of spermatozoon’s role in oocyte activation and current perspectives in diagnosis and fertility treatment. Cell Biosci. 2021;11(1):4. https://doi.org/10.1186/s13578-020-00520-1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nanassy L, Carrell DT. Paternal effects on early embryogenesis. J Exp Clin Assist Reprod. 2008;5:2. https://doi.org/10.1186/1743-1050-5-2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Keskintepe L, Eroglu A. Preservation of mammalian sperm by freeze-drying. Methods Mol Biol. 2021;2180:721–30. https://doi.org/10.1007/978-1-0716-0783-1_39.

    CAS  Article  PubMed  Google Scholar 

  7. Palazzese L, Gosalvez J, Anzalone DA, Loi P, Saragusty J. DNA fragmentation in epididymal freeze-dried ram spermatozoa impairs embryo development. J Reprod Dev. 2018;64(5):393–400.

    CAS  Article  Google Scholar 

  8. Borges E Jr, Zanetti BF, Setti AS, Braga D, Provenza RR, Iaconelli A Jr. Sperm DNA fragmentation is correlated with poor embryo development, lower implantation rate, and higher miscarriage rate in reproductive cycles of non-male factor infertility. Fertil Steril. 2019;112(3):483–90. https://doi.org/10.1016/j.fertnstert.2019.04.029.

    Article  PubMed  Google Scholar 

  9. Crowe JH, Crowe LM, Wolkers WF, Oliver AE, Ma X, Auh J-H, Tang M, Zhu S, Norris J, Tablin F. Stabilization of dry mammalian cells: lessons from nature. Integr Comp Biol. 2005;45:810–20.

    CAS  Article  Google Scholar 

  10. Julca I, Alaminos M, Gonzalez-Lopez J, Manzanera M. Xeroprotectants for the stabilization of biomaterials. Biotechnol Adv. 2012;30(6):1641–54. https://doi.org/10.1016/j.biotechadv.2012.07.002.

    CAS  Article  PubMed  Google Scholar 

  11. Liu J, Lee GY, Lawitts JA, Toner M, Biggers JD. Live pups from evaporatively dried mouse sperm stored at ambient temperature for up to 2 years. PLoS ONE. 2014;9(6): e99809. https://doi.org/10.1371/journal.pone.0099809.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. McGinnis LK, Zhu L, Lawitts JA, Bhowmick S, Toner M, Biggers JD. Mouse sperm desiccated and stored in trehalose medium without freezing. Biol Reprod. 2005;73(4):627–33. https://doi.org/10.1095/biolreprod.105.042291.

    CAS  Article  PubMed  Google Scholar 

  13. Ito D, Wakayama S, Kamada Y, Shibasaki I, Kamimura S, Ooga M, Wakayama T. Effect of trehalose on the preservation of freeze-dried mice spermatozoa at room temperature. J Reprod Dev. 2019;65(4):353–9.

    CAS  Article  Google Scholar 

  14. Patrick JL, Elliott GD, Comizzoli P. Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model. Theriogenology. 2017;103:36–43. https://doi.org/10.1016/j.theriogenology.2017.07.037.

    CAS  Article  PubMed  Google Scholar 

  15. Brogna R, Fan J, Sieme H, Wolkers WF, Oldenhof H. Drying and temperature induced conformational changes of nucleic acids and stallion sperm chromatin in trehalose preservation formulations. Sci Rep. 2021;11(1):14076. https://doi.org/10.1038/s41598-021-93569-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Sanchez-Partida LG, Simerly CR, Ramalho-Santos J. Freeze-dried primate sperm retains early reproductive potential after intracytoplasmic sperm injection. Fertil Steril. 2008;89(3):742–5. https://doi.org/10.1016/j.fertnstert.2007.02.066.

    Article  PubMed  Google Scholar 

  17. Shahmoradi E, Baheiraei N, Halvaei I. Trehalose attenuates detrimental effects of freeze-drying on human sperm parameters. Biopreserv Biobank. 2021. https://doi.org/10.1089/bio.2020.0167.

    Article  PubMed  Google Scholar 

  18. Kawase Y, Araya H, Kamada N, Jishage K, Suzuki H. Possibility of long-term preservation of freeze-dried mouse spermatozoa. Biol Reprod. 2005;72(3):568–73. https://doi.org/10.1095/biolreprod.104.035279.

    CAS  Article  PubMed  Google Scholar 

  19. Kaneko T, Serikawa T. Long-term preservation of freeze-dried mouse spermatozoa. Cryobiology. 2012;64(3):211–4. https://doi.org/10.1016/j.cryobiol.2012.01.010.

    CAS  Article  PubMed  Google Scholar 

  20. Ringleb J, Waurich R, Wibbelt G, Streich WJ, Jewgenow K. Prolonged storage of epididymal spermatozoa does not affect their capacity to fertilise in vitro-matured domestic cat (Felis catus) oocytes when using ICSI. Reprod Fertil Dev. 2011;23:818–25.

    CAS  Article  Google Scholar 

  21. Kaneko T, Serikawa T. Successful long-term preservation of rat sperm by freeze-drying. PLoS ONE. 2012;7(4): e35043. https://doi.org/10.1371/journal.pone.0035043.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Liu JL, Kusakabe H, Chang CC, Suzuki H, Schmidt DW, Julian M, Pfeffer R, Bormann CL, Tian XC, Yanagimachi R, Yang X. Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol Reprod. 2004;70(6):1776–81. https://doi.org/10.1095/biolreprod.103.025957.

    CAS  Article  PubMed  Google Scholar 

  23. Kwon IK, Park KE, Niwa K. Activation, pronuclear formation, and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. Biol Reprod. 2004;71(5):1430–6. https://doi.org/10.1095/biolreprod.104.031260.

    CAS  Article  PubMed  Google Scholar 

  24. Liu J, Lee GY, Lawitts JA, Toner M, Biggers JD. Preservation of mouse sperm by convective drying and storing in 3-O-methyl-D-glucose. PLoS ONE. 2012;7(1): e29924. https://doi.org/10.1371/journal.pone.0029924.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Lee KB, Park KE, Kwon IK, Tripurani SK, Kim KJ, Lee JH, Niwa K, Kim MK. Develop to term rat oocytes injected with heat-dried sperm heads. PLoS ONE. 2013;8(11): e78260. https://doi.org/10.1371/journal.pone.0078260.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Contact line deposits in an evaporating drop. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;62(1 Pt B):756–65. https://doi.org/10.1103/physreve.62.756.

    CAS  Article  PubMed  Google Scholar 

  27. Chakraborty N, Biswas D, Parker W, Moyer P, Elliott GD. A role for microwave processing in the dry preservation of mammalian cells. Biotechnol Bioeng. 2008;100(4):782–96. https://doi.org/10.1002/bit.21801.

    CAS  Article  PubMed  Google Scholar 

  28. Cellemme SL, Van Vorst M, Paramore E, Elliott GD. Advancing microwave technology for dehydration processing of biologics. Biopreserv Biobank. 2013;11(5):278–84. https://doi.org/10.1089/bio.2013.0024.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Chen T, Fowler A, Toner M. Literature review: supplemented phase diagram of the trehalose-water binary mixture. Cryobiology. 2000;40(3):277–82. https://doi.org/10.1006/cryo.2000.2244.

    CAS  Article  PubMed  Google Scholar 

  30. Comizzoli P, Wildt DE, Pukazhenthi BS. In vitro development of domestic cat embryos following intra-cytoplasmic sperm injection with testicular spermatozoa. Theriogenology. 2006;66(6–7):1659–63. https://doi.org/10.1016/j.theriogenology.2006.01.038.

    Article  PubMed  Google Scholar 

  31. Wood TC, Wildt DE. Effect of the quality of the cumulus-oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocysts in vitro. J Reprod Fertil. 1997;110(2):355–60.

    CAS  Article  Google Scholar 

  32. de Almeida Monteiro Melo Ferraz M, Fujihara M, Nagashima JB, Noonan MJ, Inoue-Murayama M, Songsasen N. Follicular extracellular vesicles enhance meiotic resumption of domestic cat vitrified oocytes. Sci Rep. 2020;10(1):8619. https://doi.org/10.1038/s41598-020-65497-w.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Tsujimoto Y, Kaneko T, Yoshida T, Kimura K, Inaba T, Sugiura K, Hatoya S. Development of feline embryos produced using freeze-dried sperm. Theriogenology. 2020;147:71–6. https://doi.org/10.1016/j.theriogenology.2020.02.021.

    CAS  Article  PubMed  Google Scholar 

  34. Kusakabe H, Tateno H. Characterization of chromosomal damage accumulated in freeze-dried mouse spermatozoa preserved under ambient and heat stress conditions. Mutagenesis. 2011;26(3):447–53. https://doi.org/10.1093/mutage/ger003.

    CAS  Article  PubMed  Google Scholar 

  35. Lee KB, Niwa K. Fertilization and development in vitro of bovine oocytes following intracytoplasmic injection of heat-dried sperm heads. Biol Reprod. 2006;74(1):146–52. https://doi.org/10.1095/biolreprod.105.044743.

    CAS  Article  PubMed  Google Scholar 

  36. Prochowska S, Nizanski W, Partyka A. Low levels of apoptotic-like changes in fresh and cryopreserved feline spermatozoa collected from the urethra and epididymis. Theriogenology. 2017;88:43–9. https://doi.org/10.1016/j.theriogenology.2016.09.045.

    CAS  Article  PubMed  Google Scholar 

  37. Kunkitti P, Bergqvist AS, Sjunnesson Y, Johannisson A, Axner E. The tolerance of feline corpus and cauda spermatozoa to cryostress. Theriogenology. 2016;85(3):502–8. https://doi.org/10.1016/j.theriogenology.2015.09.032.

    Article  PubMed  Google Scholar 

  38. Elliott GD, Lee PC, Paramore E, Van Vorst M, Comizzoli P. Resilience of oocyte germinal vesicles to microwave-assisted drying in the domestic cat model. Biopreserv Biobank. 2015;13(3):164–71. https://doi.org/10.1089/bio.2014.0078.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Kamada Y, Wakayama S, Shibasaki I, Ito D, Kamimura S, Ooga M, Wakayama T. Assessing the tolerance to room temperature and viability of freeze-dried mice spermatozoa over long-term storage at room temperature under vacuum. Sci Rep. 2018;8(1):10602. https://doi.org/10.1038/s41598-018-28896-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Kestintepe L, Pacholczyk G, Machnicka A, Norris K, Curuk MA, Khan I, Brackett BG. Bovine blasocyst development from oocytes injected with freeze-dried spermatozoa. Biol Reprod. 2002;67:409–15.

    Article  Google Scholar 

  41. Palazzese L, Anzalone DA, Turri F, Faieta M, Donnadio A, Pizzi F, Pittia P, Matsukawa K, Loi P. Whole genome integrity and enhanced developmental potential in ram freeze-dried spermatozoa at mild sub-zero temperature. Sci Rep. 2020;10(1):18873. https://doi.org/10.1038/s41598-020-76061-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Olaciregui M, Luno V, Domingo P, Gonzalez N, Gil L. In vitro developmental ability of ovine oocytes following intracytoplasmic injection with freeze-dried spermatozoa. Sci Rep. 2017;7(1):1096. https://doi.org/10.1038/s41598-017-00583-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Brusentsev E, Kizilova E, Mokrousova V, Kozhevnikova V, Rozhkova I, Amstislavsky S. Characteristics and fertility of domestic cat epididymal spermatozoa cryopreserved with two different freezing media. Theriogenology. 2018;110:148–52. https://doi.org/10.1016/j.theriogenology.2017.12.038.

    CAS  Article  PubMed  Google Scholar 

  44. Bogliolo L, Leoni G, Ledda S, Naitana S, Zedda M, Carluccio A, Pau S. Intracytoplasmic sperm injection of in vitro matured oocytes of domestic cats with frozen-thawed epididymal spermatozoa. Theriogenology. 2001;56:955–67.

    CAS  Article  Google Scholar 

  45. de Macedo MP, Glanzner WG, Rissi VB, Gutierrez K, Currin L, Baldassarre H, Bordignon V. A fast and reliable protocol for activation of porcine oocytes. Theriogenology. 2019;123:22–9. https://doi.org/10.1016/j.theriogenology.2018.09.021.

    CAS  Article  PubMed  Google Scholar 

  46. Swann K. The role of Ca(2+) in oocyte activation during in vitro fertilization: insights into potential therapies for rescuing failed fertilization. Biochim Biophys Acta Mol Cell Res. 2018;1865(11 Pt B):1830–7. https://doi.org/10.1016/j.bbamcr.2018.05.003.

    CAS  Article  PubMed  Google Scholar 

  47. Garcia-Rodriguez A, Gosalvez J, Agarwal A, Roy R, Johnston S. DNA damage and repair in human reproductive cells. Int J Mol Sci. 2018;20(1). https://doi.org/10.3390/ijms20010031.

  48. Swanson WF, Roth TL, Godke RA. Persistence of the developmental block of in vitro fertilized domestic cat embryos to temporal variations in culture conditions. Mol Reprod Dev. 1996;43:298–305.

    CAS  Article  Google Scholar 

  49. Roth TL, Swanson WF, Wildt DE. Developmental competence of domestic cat embryos fertilized in vivo versus in vitro. Biol Reprod. 1994;51:441–51.

    CAS  Article  Google Scholar 

  50. Colombo M, Alkali IM, Prochowska S, Luvoni GC. Fighting like cats and dogs: challenges in domestic carnivore oocyte development and promises of innovative culture systems. Animals (Basel). 2021;11(7). https://doi.org/10.3390/ani11072135.

  51. Barroso G, Valdespin C, Vega E, Kershenovich R, Avila R, Avendano C, Oehninger S. Developmental sperm contributions: fertilization and beyond. Fertil Steril. 2009;92(3):835–48. https://doi.org/10.1016/j.fertnstert.2009.06.030.

    CAS  Article  PubMed  Google Scholar 

  52. Kumar M, Kumar K, Jain S, Hassan T, Dada R. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics. 2013;68(S1):5–14. https://doi.org/10.6061/clinics/2013(Sup01)02.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Terada Y, Schatten G, Hasegawa H, Yaegashi N. Essential roles of the sperm centrosome in human fertilization: developing the therapy for fertilization failure due to sperm centrosomal dysfunction. Tohoku J Exp Med. 2010;220(4):247–58. https://doi.org/10.1620/tjem.220.247.

    Article  PubMed  Google Scholar 

  54. Sfakianoudis K, Maziotis E, Karantzali E, Kokkini G, Grigoriadis S, Pantou A, Giannelou P, Petroutsou K, Markomichali C, Fakiridou M, Koutsilieris M, Asimakopoulos B, Pantos K, Simopoulou M. Molecular drivers of developmental arrest in the human preimplantation embryo: a systematic review and critical analysis leading to mapping future research. Int J Mol Sci. 2021;22(15). https://doi.org/10.3390/ijms22158353.

  55. Comizzoli P, Wildt DE, Pukazhenthi BS. Poor centrosomal function of cat testicular spermatozoa impairs embryo development in vitro after intracytoplasmic sperm injection1. Biol Reprod. 2006;75(2):252–60. https://doi.org/10.1095/biolreprod.106.051342.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Brent Whitaker (Animal Rescue Inc.), Dr. Joy Lewis (Spay Now Animal Surgery Clinic), Dr. Keiko Antoku (Last Chance Animal Rescue), and their staff for providing domestic cat testes and ovaries, Hannah Sylvester for technical assistance on sperm desiccation, and Luiz Colturato for consultation on ICSI techniques for SCBI laboratory. Our thanks go also to the veterinary clinic of Berlin Animal Shelter for collecting and providing samples and to Stefanie Jänsch for excellent technical assistance on ICSI performance for IZW laboratory.

Funding

This study is funded by Smithsonian Endowments for Research.

Author information

Authors and Affiliations

Authors

Contributions

P.-C. L.: conceptualization, methodology, investigation, formal analysis, visualization, writing—original draft; J.Z.: methodology, investigation, writing—review and editing; K.J.: resources, supervision, writing—review and editing; P.C.: conceptualization, funding acquisition, resources, supervision, writing—review and editing.

Corresponding author

Correspondence to Pierre Comizzoli.

Ethics declarations

Ethics approval

Smithsonian Conservation Biology Institute’s Animal Care and Use Committee granted a waiver of the animal care and use approval for that study because testes and ovaries were collected at local veterinary clinics as byproducts from owner-requested routine neutering and spaying. The same applied to the use of ovaries at the Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany. Ovaries and testes were collected as byproducts from the routine neutering program of the Berlin Animal Shelter.

Consent to participate

N/A.

Consent for publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 355 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, PC., Zahmel, J., Jewgenow, K. et al. Desiccated cat spermatozoa retain DNA integrity and developmental potential after prolonged storage and shipping at non-cryogenic temperatures. J Assist Reprod Genet 39, 141–151 (2022). https://doi.org/10.1007/s10815-021-02337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02337-4

Keywords

  • Spermatozoa
  • Desiccation
  • Non-cryogenic storage
  • DNA integrity
  • ICSI
  • Developmental potential