Skip to main content
Log in

Inhibition of LINE-1 retrotransposition represses telomere reprogramming during mouse 2-cell embryo development

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether inhibition of LINE-1 affects telomere reprogramming during 2-cell embryo development.

Methods

Mouse zygotes were cultured with or without 1 µM azidothymidine (AZT) for up to 15 h (early 2-cell, G1/S) or 24 h (late 2-cell, S/G2). Gene expression and DNA copy number were determined by RT-qPCR and qPCR respectively. Immunostaining and telomeric PNA-FISH were performed for co-localization between telomeres and ZSCAN4 or LINE-1-Orf1p.

Results

LINE-1 copy number was remarkably reduced in later 2-cell embryos by exposure to 1 µM AZT, and telomere lengths in late 2-cell embryos with AZT were significantly shorter compared to control embryos (P = 0.0002). Additionally, in the absence of LINE-1 inhibition, Dux, Zscan4, and LINE-1 were highly transcribed in early 2-cell embryos, as compared to late 2-cell embryos (P < 0.0001), suggesting that these 2-cell genes are activated at the early 2-cell stage. However, in early 2-cell embryos with AZT treatment, mRNA levels of Dux, Zscan4, and LINE-1 were significantly decreased. Furthermore, both Zscan4 and LINE-1 encoded proteins localized to telomere regions in 2-cell embryos, but this co-localization was dramatically reduced after AZT treatment (P < 0.001).

Conclusions

Upon inhibition of LINE-1 retrotransposition in mouse 2-cell embryos, Dux, Zscan4, and LINE-1 were significantly downregulated, and telomere elongation was blocked. ZSCAN4 foci and their co-localization with telomeres were also significantly decreased, indicating that ZSCAN4 is an essential component of the telomere reprogramming that occurs in mice at the 2-cell stage. Our findings also suggest that LINE-1 may directly contribute to telomere reprogramming in addition to regulating gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., Agarwal, P., . . . Lander, E. S. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915), 520-562. doi:https://doi.org/10.1038/nature01262

  2. Fu, B., Ma, H., & Liu, D. (2019). Endogenous retroviruses function as gene expression regulatory elements during mammalian pre-implantation embryo development. Int J Mol Sci, 20(3). https://doi.org/10.3390/ijms20030790

  3. Kazazian HH Jr, Moran JV. Mobile DNA in health and disease. N Engl J Med. 2017;377(4):361–70. https://doi.org/10.1056/NEJMra1510092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beraldi R, Pittoggi C, Sciamanna I, Mattei E, Spadafora C. Expression of LINE-1 retroposons is essential for murine preimplantation development. Mol Reprod Dev. 2006;73(3):279–87. https://doi.org/10.1002/mrd.20423.

    Article  CAS  PubMed  Google Scholar 

  5. Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989;5(4):103–7. https://doi.org/10.1016/0168-9525(89)90039-5.

    Article  CAS  PubMed  Google Scholar 

  6. Ostertag EM, Kazazian HH Jr. Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501–38. https://doi.org/10.1146/annurev.genet.35.102401.091032.

    Article  CAS  PubMed  Google Scholar 

  7. Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331–68. https://doi.org/10.1146/annurev.genet.40.110405.090448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–73. https://doi.org/10.1038/350569a0.

    Article  CAS  PubMed  Google Scholar 

  9. de Lange T. Telomere biology and DNA repair: enemies with benefits. FEBS Lett. 2010;584(17):3673–4. https://doi.org/10.1016/j.febslet.2010.07.030.

    Article  CAS  PubMed  Google Scholar 

  10. Keefe, D. L., Franco, S., Liu, L., Trimarchi, J., Cao, B., Weitzen, S., . . . Blasco, M. A. (2005). Telomere length predicts embryo fragmentation after in vitro fertilization in women--toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol, 192(4), 1256–1260; discussion 1260–1251. doi:https://doi.org/10.1016/j.ajog.2005.01.036

  11. Keefe DL, Liu L, Marquard K. Telomeres and aging-related meiotic dysfunction in women. Cell Mol Life Sci. 2007;64(2):139–43. https://doi.org/10.1007/s00018-006-6466-z.

    Article  CAS  PubMed  Google Scholar 

  12. Keefe DL, Marquard K, Liu L. The telomere theory of reproductive senescence in women. Curr Opin Obstet Gynecol. 2006;18(3):280–5. https://doi.org/10.1097/01.gco.0000193019.05686.49.

    Article  PubMed  Google Scholar 

  13. Liu L, Blasco M, Trimarchi J, Keefe D. An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol. 2002;249(1):74–84.

    Article  CAS  Google Scholar 

  14. Liu L, Blasco MA, Keefe DL. Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles. EMBO Rep. 2002;3(3):230–4. https://doi.org/10.1093/embo-reports/kvf055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL. Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci U S A. 2004;101(17):6496–501. https://doi.org/10.1073/pnas.0400755101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, L., Bailey, S. M., Okuka, M., Munoz, P., Li, C., Zhou, L., . . . Keefe, D. L. (2007). Telomere lengthening early in development. Nat Cell Biol, 9(12), 1436-1441. doi:https://doi.org/10.1038/ncb1664

  17. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–9. https://doi.org/10.1002/(sici)1520-6408(1996)18:2%3c173::aid-dvg10%3e3.0.co;2-3.

    Article  CAS  PubMed  Google Scholar 

  18. Henson JD, Neumann AA, Yeager TR, Reddel RR. Alternative lengthening of telomeres in mammalian cells. Oncogene. 2002;21(4):598–610. https://doi.org/10.1038/sj.onc.1205058.

    Article  CAS  PubMed  Google Scholar 

  19. Pickett HA, Reddel RR. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat Struct Mol Biol. 2015;22(11):875–80. https://doi.org/10.1038/nsmb.3106.

    Article  CAS  PubMed  Google Scholar 

  20. Anifandis G, Messini CI, Dafopoulos K, Messinis IE. Genes and conditions controlling mammalian pre- and post-implantation embryo development. Curr Genomics. 2015;16(1):32–46. https://doi.org/10.2174/1389202916666141224205025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hemberger M, Dean W, Reik W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol. 2009;10(8):526–37. https://doi.org/10.1038/nrm2727.

    Article  CAS  PubMed  Google Scholar 

  22. Hendrickson, P. G., Dorais, J. A., Grow, E. J., Whiddon, J. L., Lim, J. W., Wike, C. L., . . . Cairns, B. R. (2017). Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet, 49(6), 925-934. https://doi.org/10.1038/ng.3844

  23. Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN. The transition from maternal to embryonic control in the 2-cell mouse embryo. Embo j. 1982;1(6):681–6.

    Article  CAS  Google Scholar 

  24. Lu X, Sachs F, Ramsay L, Jacques PE, Goke J, Bourque G, Ng HH. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. 2014;21(4):423–5. https://doi.org/10.1038/nsmb.2799.

    Article  CAS  PubMed  Google Scholar 

  25. Macfarlan, T. S., Gifford, W. D., Driscoll, S., Lettieri, K., Rowe, H. M., Bonanomi, D., . . . Pfaff, S. L. (2012). Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature, 487(7405), 57-63. doi:https://doi.org/10.1038/nature11244

  26. Sugie K, Funaya S, Kawamura M, Nakamura T, Suzuki MG, Aoki F. Expression of Dux family genes in early preimplantation embryos. Sci Rep. 2020;10(1):19396. https://doi.org/10.1038/s41598-020-76538-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Percharde, M., Lin, C. J., Yin, Y., Guan, J., Peixoto, G. A., Bulut-Karslioglu, A., . . . Ramalho-Santos, M. (2018). A LINE1-Nucleolin partnership regulates early development and ESC identity. Cell, 174(2), 391-405.e319. doi:https://doi.org/10.1016/j.cell.2018.05.043

  28. Falco G, Lee SL, Stanghellini I, Bassey UC, Hamatani T, Ko MS. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev Biol. 2007;307(2):539–50. https://doi.org/10.1016/j.ydbio.2007.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zalzman, M., Falco, G., Sharova, L. V., Nishiyama, A., Thomas, M., Lee, S. L., . . . Ko, M. S. (2010). Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature, 464(7290), 858-863. doi:https://doi.org/10.1038/nature08882

  30. Macaulay IC, Teng MJ, Haerty W, Kumar P, Ponting CP, Voet T. Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq. Nat Protoc. 2016;11(11):2081–103. https://doi.org/10.1038/nprot.2016.138.

    Article  CAS  PubMed  Google Scholar 

  31. Okamoto I. Combined immunofluorescence, RNA FISH, and DNA FISH in preimplantation mouse embryos. Methods Mol Biol. 2018;1861:149–59. https://doi.org/10.1007/978-1-4939-8766-5_12.

    Article  CAS  PubMed  Google Scholar 

  32. Kitsou, C., Lazaros, L., Papoudou-Bai, A., Sakaloglou, P., Mastora, E., Lykovardakis, T., . . . Georgiou, I. (2020). Reverse transcriptase affects gametogenesis and preimplantation development in mouse. In Vivo, 34(5), 2269-2276. doi:https://doi.org/10.21873/invivo.12037

  33. Sieh, E., Coluzzi, M. L., Cusella De Angelis, M. G., Mezzogiorno, A., Floridia, M., Canipari, R., . . . Vella, S. (1992). The effects of AZT and DDI on pre- and postimplantation mammalian embryos: an in vivo and in vitro study. AIDS Res Hum Retroviruses, 8(5), 639-649. doi:https://doi.org/10.1089/aid.1992.8.639

  34. Toltzis P, Mourton T, Magnuson T. Effect of zidovudine on preimplantation murine embryos. Antimicrob Agents Chemother. 1993;37(8):1610–3. https://doi.org/10.1128/aac.37.8.1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai L, Huang Q, Boeke JD. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem. 2011;12:18. https://doi.org/10.1186/1471-2091-12-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones RB, Garrison KE, Wong JC, Duan EH, Nixon DF, Ostrowski MA. Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS ONE. 2008;3(2):e1547. https://doi.org/10.1371/journal.pone.0001547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sciamanna I, Vitullo P, Curatolo A, Spadafora C. A reverse transcriptase-dependent mechanism is essential for murine preimplantation development. Genes (Basel). 2011;2(2):360–73. https://doi.org/10.3390/genes2020360.

    Article  CAS  Google Scholar 

  38. Jachowicz JW, Bing X, Pontabry J, Boskovic A, Rando OJ, Torres-Padilla ME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet. 2017;49(10):1502–10. https://doi.org/10.1038/ng.3945.

    Article  CAS  PubMed  Google Scholar 

  39. Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, Kazazian HH Jr. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 2009;23(11):1303–12. https://doi.org/10.1101/gad.1803909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mitsuya, H., Weinhold, K. J., Furman, P. A., St Clair, M. H., Lehrman, S. N., Gallo, R. C., . . . Broder, S. (1985). 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci U S A, 82(20), 7096-7100. doi:https://doi.org/10.1073/pnas.82.20.7096

  41. Xie Y, Rosser JM, Thompson TL, Boeke JD, An W. Characterization of L1 retrotransposition with high-throughput dual-luciferase assays. Nucleic Acids Res. 2011;39(3): e16. https://doi.org/10.1093/nar/gkq1076.

    Article  CAS  PubMed  Google Scholar 

  42. Malki S, van der Heijden GW, O’Donnell KA, Martin SL, Bortvin A. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell. 2014;29(5):521–33. https://doi.org/10.1016/j.devcel.2014.04.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Olivero OA. Mechanisms of genotoxicity of nucleoside reverse transcriptase inhibitors. Environ Mol Mutagen. 2007;48(3–4):215–23. https://doi.org/10.1002/em.20195.

    Article  CAS  PubMed  Google Scholar 

  44. Kosebent EG, Uysal F, Ozturk S. Telomere length and telomerase activity during folliculogenesis in mammals. J Reprod Dev. 2018;64(6):477–84. https://doi.org/10.1262/jrd.2018-076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ozturk S. Telomerase activity and telomere length in male germ cells. Biol Reprod. 2015;92(2):53. https://doi.org/10.1095/biolreprod.114.124008.

    Article  CAS  PubMed  Google Scholar 

  46. Ozturk S, Sozen B, Demir N. Telomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species. Mol Hum Reprod. 2014;20(1):15–30. https://doi.org/10.1093/molehr/gat055.

    Article  CAS  PubMed  Google Scholar 

  47. Keefe DL. Telomeres, reproductive aging, and genomic instability during early development. Reprod Sci. 2016;23(12):1612–5. https://doi.org/10.1177/1933719116676397.

    Article  CAS  PubMed  Google Scholar 

  48. Nakai-Futatsugi Y, Niwa H. Zscan4 is activated after telomere shortening in mouse embryonic stem cells. Stem Cell Reports. 2016;6(4):483–95. https://doi.org/10.1016/j.stemcr.2016.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pardue ML, DeBaryshe PG. Retrotransposons that maintain chromosome ends. Proc Natl Acad Sci U S A. 2011;108(51):20317–24. https://doi.org/10.1073/pnas.1100278108.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Villasante A, Abad JP, Planello R, Mendez-Lago M, Celniker SE, de Pablos B. Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res. 2007;17(12):1909–18. https://doi.org/10.1101/gr.6365107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Belgnaoui SM, Gosden RG, Semmes OJ, Haoudi A. Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int. 2006;6:13. https://doi.org/10.1186/1475-2867-6-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol. 2006;357(5):1383–93. https://doi.org/10.1016/j.jmb.2006.01.089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turner S, Wong HP, Rai J, Hartshorne GM. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Mol Hum Reprod. 2010;16(9):685–94. https://doi.org/10.1093/molehr/gaq048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tohonen, V., Katayama, S., Vesterlund, L., Jouhilahti, E. M., Sheikhi, M., Madissoon, E., . . . Kere, J. (2015). Novel PRD-like homeodomain transcription factors and retrotransposon elements in early human development. Nat Commun, 6, 8207. doi:https://doi.org/10.1038/ncomms9207

Download references

Funding

This study was supported by March of Dimes Grant # 6-FY14-432 and the Stanley H. Kaplan Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Chamani, I.J., Luo, D. et al. Inhibition of LINE-1 retrotransposition represses telomere reprogramming during mouse 2-cell embryo development. J Assist Reprod Genet 38, 3145–3153 (2021). https://doi.org/10.1007/s10815-021-02331-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02331-w

Keywords

Navigation