Skip to main content
Log in

The function of Nucleoporin 37 on mouse oocyte maturation and preimplantation embryo development

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Nucleoporin 37 (NUP37) has been reported to activate the YAP-TEAD signaling, which is crucial for early embryo development. However, whether NUP37 is involved in oocyte meiosis and embryo development remains largely unknown. The study aimed to clarify the function of Nup37 in oocyte maturation and early embryo development, and to explore the mechanism.

Methods

The expression level and subcellular localization of NUP37 were explored. After knocking down of Nup37 by microinjecting interfering RNA (siRNA), the oocyte maturation rate, aberrant PB1 extrusion rate, and blastocyst formation rate were evaluated. In addition, the effect of the downregulation of Nup37 on YAP-TEAD signaling was confirmed by immunofluorescence staining and real-time quantitative PCR.

Results

NUP37 was highly expressed in oocytes and early embryos; it mainly localized to the nuclear periphery at mice GV stage oocytes and early embryos. Nup37 depletion led to aberrant PB1 extrusion at the MII stage oocyte and a decreased blastocyst formation rate. The reduction of NUP37 caused YAP1 mislocalization and decreased the expression of Tead1, Tead2, and Tead4 during mice embryo development, thus affecting the YAP-TEAD activity and embryo developmental competence.

Conclusions

In summary, NUP37 played an important role in mice oocyte maturation and preimplantation embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data underlying this article is available in the article and in its online supplementary material.

References

  1. Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nature reviews Molecular cell biology. 2017;18(2):73–89.

    Article  CAS  PubMed  Google Scholar 

  2. Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O. Structure and gating of the nuclear pore complex. NAT COMMUN. 2015;6(1).

  3. Schwartz TU. The structure inventory of the nuclear pore complex. J MOL BIOL. 2016;428(10):1986–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wente SR, Rout MP. The nuclear pore complex and nuclear transport. CSH PERSPECT BIOL. 2010;2(10):a562.

    Google Scholar 

  5. Preston CC, Storm EC, Leonard RJ, Faustino RS. Emerging roles for nucleoporins in reproductive cellular physiology (1). Can J Physiol Pharmacol. 2019;97(4):257–64.

    Article  CAS  PubMed  Google Scholar 

  6. Angelo MAD, Hetzer MW. Structure, dynamics and function of nuclear pore complexes. TRENDS CELL BIOL. 2008;18(10):456–66.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen F, Jiao X, Zhang J, Wu D, Ding Z, Wang Y, et al. Nucleoporin35 is a novel microtubule associated protein functioning in oocyte meiotic spindle architecture. EXP CELL RES. 2018;371(2):435–43.

    Article  CAS  PubMed  Google Scholar 

  8. Carvalhal S, Stevense M, Koehler K, Naumann R, Huebner A, Jessberger R, et al. ALADIN is required for the production of fertile mouse oocytes. MOL BIOL CELL. 2017;28(19):2470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arafah K, Lopez F, Cazin C, Kherraf ZE, Tassistro V, Loundou A, et al. Defect in the nuclear pore membrane glycoprotein 210-like gene is associated with extreme uncondensed sperm nuclear chromatin and male infertility: a case report. HUM REPROD. 2021;36(3):693–701.

    Article  PubMed  Google Scholar 

  10. Smitherman M, Lee K, Swanger J, Kapur R, Clurman BE. Characterization and targeted disruption of murine Nup50, a p27(Kip1)-interacting component of the nuclear pore complex. MOL CELL BIOL. 2000;20(15):5631–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okita K, Kiyonari H, Nobuhisa I, Kimura N, Aizawa S, Taga T. Targeted disruption of the mouse ELYS gene results in embryonic death at peri-implantation development. GENES CELLS. 2004;9(11):1083–91.

    Article  CAS  PubMed  Google Scholar 

  12. Wu X, Kasper LH, Mantcheva RT, Mantchev GT, Springett MJ, van Deursen JM. Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proc Natl Acad Sci U S A. 2001;98(6):3191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. NAT STRUCT MOL BIOL. 2013;20(9):1131–9.

    Article  CAS  PubMed  Google Scholar 

  14. Asakawa H, Kojidani T, Yang HJ, Ohtsuki C, Osakada H, Matsuda A, et al. Asymmetrical localization of Nup107–160 subcomplex components within the nuclear pore complex in fission yeast. PLOS GENET. 2019;15(6):e1008061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis. BIOL REPROD. 2019;100(1):15–24.

    Article  PubMed  Google Scholar 

  16. di Pietro F, Echard A, Morin X. Regulation of mitotic spindle orientation: an integrated view. EMBO REP. 2016;17(8):1106–30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Babariya D, Fragouli E, Alfarawati S, Spath K, Wells D. The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos. HUM REPROD. 2017;32(12):2549–60.

    Article  CAS  PubMed  Google Scholar 

  18. Mishra RK, Chakraborty P, Arnaoutov A, Fontoura BMA, Dasso M. The Nup107-160 complex and γ-TuRC regulate microtubule polymerization at kinetochores. NAT CELL BIOL. 2010;12(2):164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo X, Liu Y, Feng W, Lei L, Du Y, Wu J, et al. NUP37, a positive regulator of YAP/TEAD signaling, promotes the progression of hepatocellular carcinoma. Oncotarget. 2017;8(58):98004–13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. DEVELOPMENT. 2014;141(8):1614–26.

    Article  CAS  PubMed  Google Scholar 

  21. Pocaterra A, Romani P, Dupont S. YAP/TAZ functions and their regulation at a glance. J CELL SCI. 2020133(2).

  22. Kaneko KJ, Cullinan EB, Latham KE, DePamphilis ML. Transcription factor mTEAD-2 is selectively expressed at the beginning of zygotic gene expression in the mouse. DEVELOPMENT. 1997;124(10):1963–73.

    Article  CAS  PubMed  Google Scholar 

  23. Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. DEVELOPMENT. 2007;134(21):3827–36.

    Article  CAS  PubMed  Google Scholar 

  24. Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. MECH DEVELOP. 2008;125(3–4):270–83.

    Article  CAS  Google Scholar 

  25. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. DEV CELL. 2009;16(3):398–410.

    Article  CAS  PubMed  Google Scholar 

  26. Sha QQ, Zheng W, Wu YW, Li S, Guo L, Zhang S, et al. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. NAT COMMUN. 2020;11(1):4917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu C, Ji SY, Dang YJ, Sha QQ, Yuan YF, Zhou JJ, et al. Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse. CELL RES. 2016;26(3):275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sawada A, Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. MOL CELL BIOL. 2008;28(10):3177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gerri C, McCarthy A, Alanis-Lobato G, Demtschenko A, Bruneau A, Loubersac S, et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. NATURE. 2020;587(7834):443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hashimoto M, Sasaki H. Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells. DEV CELL. 2019;50(2):139–54.

    Article  CAS  PubMed  Google Scholar 

  31. Gamini R, Han W, Stone JE, Schulten K. Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. PLOS COMPUT BIOL. 2014;10(3):e1003488.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kapinos LE, Huang B, Rencurel C, Lim RYH. Karyopherins regulate nuclear pore complex barrier and transport function. J CELL BIOL. 2017;216(11):3609–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamm C, Bower N, Anneren C. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J CELL SCI. 2011;124(Pt 7):1136–44.

    Article  PubMed  Google Scholar 

  34. Landin-Malt A, Benhaddou A, Zider A, Flagiello D. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors. GENE. 2016;591(1):292–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Y, Shi Y, Fu J, Yu M, Feng R, Sang Q, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. The American Journal of Human Genetics. 2016;99(3):744–52.

    Article  CAS  PubMed  Google Scholar 

  36. Yang P, Yin C, Li M, Ma S, Cao Y, Zhang C, et al. Mutation analysis of tubulin beta 8 classVIII in infertile females with oocyte or embryonic defects. CLIN GENET. 2021;99(1):208–14.

    Article  CAS  PubMed  Google Scholar 

  37. Mu J, Wang W, Chen B, Wu L, Li B, Mao X, et al. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J MED GENET. 2019;56(7):471–80.

    Article  CAS  PubMed  Google Scholar 

  38. Feng R, Sang Q, Kuang Y, Sun X, Yan Z, Zhang S, et al. Mutations in TUBB8 and human oocyte meiotic arrest. N Engl J Med. 2016;374(3):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jiaxi Cheng for her careful discussion on the content of the manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (2017YFA0103801) and the National Natural Science Foundation of China (No. 31871447, No. 31571544, and No. 31522034).

Author information

Authors and Affiliations

Authors

Contributions

Q.G., Q.L., N.W., and A.S. performed the experiments. Q.G. and J.W. analyzed the data. Q.G., Q.L., and L.Y. designed the study. Q.G., Q.L, and L.Y. wrote the manuscript with help from all authors. The manuscript has been approved by all authors for publication.

Corresponding author

Correspondence to Liying Yan.

Ethics declarations

Ethics approval

Animal experimental procedures were followed as the Institutional Animal Welfare and Ethics Committee policies of Peking University (LA2018261).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Subcellular localization of Nup37 at the 8-cell stage. Immunofluorescent staining of Nup37 showing that in some cases Nup37 localized at the nucleus at the 8-cell stage. Scale bar, 20μm. (PNG 3604 kb)

High resulotion image (TIF 2048 kb)

ESM 2

NUP37 inhibition did not affect chromosome ploidy. (A) Metaphase spread of chromosomes from SiNC and SiNup37 MII oocytes, chromosomes were stained with DAPI. Scale bar, 10μm. (B) The chromosome ploidy was recorded and compared between the SiNC (n = 24) and SiNup37 (n = 46) group. (C) There was no significant difference in euploidy rate between SiNC and SiNup37 (P = 0.603, Chi-Squared Test). (PNG 561 kb)

High resulotion image (TIF 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Liu, Q., Wang, N. et al. The function of Nucleoporin 37 on mouse oocyte maturation and preimplantation embryo development. J Assist Reprod Genet 39, 107–116 (2022). https://doi.org/10.1007/s10815-021-02330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02330-x

Keywords

Navigation