Skip to main content
Log in

The relationship of plasma antioxidant levels to semen parameters: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The understanding of the role of plasma antioxidant levels in male fertility in the USA is limited. In a secondary analysis of the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial, we sought to determine whether serum levels of vitamin E (α-tocopherol), zinc, and selenium were correlated with semen parameters and couple fertility outcomes.

Methods

This study is a secondary analysis of the MOXI clinical trial. The primary endpoints in this secondary analysis include semen parameters, and DNA fragmentation and clinical outcomes including pregnancy and live birth. Analyses were completed using Wilcoxon’s rank-sum test and linear regression models.

Results

At baseline, the analysis included plasma labs for vitamin E (n = 131), selenium (n = 124), and zinc (n = 128). All baseline plasma values were in the normal ranges. There was no association between selenium, zinc, or vitamin E levels and semen parameters or DNA fragmentation. Baseline antioxidant levels in the male partners did not predict pregnancy or live birth among all couples. Among those randomized to placebo, baseline male antioxidant levels did not differ between those couples with live birth and those that did not conceive or have a live birth.

Conclusions

Among men attending fertility centers in the USA, who have sufficient plasma antioxidant levels of zinc, selenium, or vitamin E, no association was observed between vitamins and semen parameters or clinical outcomes in couples with male infertility. Higher levels of antioxidants among men with circulating antioxidants in the normal range do not appear to confer benefit on semen parameters or male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oostingh EC, Steegers-Theunissen RPM, de Vries JHM, et al. Strong adherence to a healthy dietary pattern is associated with better semen quality, especially in men with poor semen quality. Fertil Steril. 2017;107(4):916-923.e2. https://doi.org/10.1016/j.fertnstert.2017.02.103.

    Article  PubMed  Google Scholar 

  2. Nassan FL, Jensen TK, Priskorn L, et al. Association of dietary patterns with testicular function in young Danish men. JAMA Netw open. 2020;3(2):e1921610. https://doi.org/10.1001/jamanetworkopen.2019.21610.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aktan G, Doǧru-Abbasoǧlu S, Küçükgergin C, et al. Mystery of idiopathic male infertility: Is oxidative stress an actual risk? Fertil Steril. 2013;99(5):1211–5. https://doi.org/10.1016/j.fertnstert.2012.11.045.

    Article  CAS  PubMed  Google Scholar 

  4. Smits RM, Mackenzie-Proctor R, Yazdani A, et al (2019) Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2019

  5. Ko EY, Sabanegh ES, Agarwal A (2014) Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil. Steril. 102

  6. McQueen DB, Zhang J, Robins JC. Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2019;112(1):54-60.e3. https://doi.org/10.1016/j.fertnstert.2019.03.003.

    Article  PubMed  Google Scholar 

  7. McQueen DB, Luck ML, Hughes L, et al. Parental origin of embryonic aneuploidy in couples with recurrent pregnancy loss. Fertil Steril. 2020;114:e46–7. https://doi.org/10.1016/j.fertnstert.2020.08.150.

    Article  Google Scholar 

  8. Tan J, Taskin O, Albert A, Bedaiwy MA (2019) Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: a systematic review and meta-analysis. Reprod. Biomed. Online 38

  9. Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 43

  10. Bensoussan K, Morales CR, Hermo L. Vitamin E deficiency causes incomplete spermatogenesis and affects the structural differentiation of epithelial cells of the epididymis in the rat. J Androl. 1998;19:266–88. https://doi.org/10.1002/j.1939-4640.1998.tb02006.x.

    Article  CAS  PubMed  Google Scholar 

  11. Ebisch IMW, Thomas CMG, Peters WHM, et al (2007) The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum. Reprod. Update 13

  12. Mirnamniha M, Faroughi F, Tahmasbpour E, et al (2019) An overview on role of some trace elements in human reproductive health, sperm function and fertilization process. Rev. Environ. Health

  13. IOM (Institute of Medicine) (2000) Selenium. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. panel on dietary antioxidants and related compounds. In: Washington, DC Natl. Acad. Sci. Natl. Acad. Press

  14. Boitani C, Puglisi R. Selenium, a key element in spermatogenesis and male fertility. Adv Exp Med Biol. 2008;636:65–73. https://doi.org/10.1007/978-0-387-09597-4_4.

    Article  CAS  PubMed  Google Scholar 

  15. Steiner AZ, Hansen KR, Barnhart KT, et al. The effect of antioxidants on male factor infertility: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil Steril. 2020;113:552-560.e3. https://doi.org/10.1016/j.fertnstert.2019.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evenson DP, Larson KL, Jost LK (2002) Sperm chromatin structure assay: Its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 23

  17. Greco E, Iacobelli M, Rienzi L, et al. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26:349–53. https://doi.org/10.2164/jandrol.04146.

    Article  CAS  PubMed  Google Scholar 

  18. Schisterman EF, Sjaarda LA, Clemons T, et al. Effect of folic acid and zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment: a randomized clinical trial. JAMA - J Am Med Assoc. 2020;323:35–48. https://doi.org/10.1001/jama.2019.18714.

    Article  CAS  Google Scholar 

  19. Buhling K, Schumacher A, Eulenburg C zu, Laakmann E (2019) Influence of oral vitamin and mineral supplementation on male infertility: a meta-analysis and systematic review. Reprod. Biomed. Online 39

  20. Laclaustra M, Stranges S, Navas-Acien A, et al. Serum selenium and serum lipids in US adults: National Health and Nutrition Examination Survey (NHANES) 2003–2004. Atherosclerosis. 2010;210:643–8. https://doi.org/10.1016/j.atherosclerosis.2010.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bleys J, Navas-Acien A, Guallar E. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med. 2008;168:404–10. https://doi.org/10.1001/archinternmed.2007.74.

    Article  CAS  PubMed  Google Scholar 

  22. Scott R, Macpherson A, Yatest RWS, et al. The effect of oral selenium supplementation on human sperm motility. Br J Urol. 1998;82:76–80. https://doi.org/10.1046/j.1464-410X.1998.00683.x.

    Article  CAS  PubMed  Google Scholar 

  23. Eroglu M, Sahin S, Durukan B, et al. Blood serum and seminal plasma selenium, total antioxidant capacity and coenzyme Q10 levels in relation to semen parameters in men with idiopathic infertility. Biol Trace Elem Res. 2014;159:46–51. https://doi.org/10.1007/s12011-014-9978-7.

    Article  CAS  PubMed  Google Scholar 

  24. Kafai MR, Ganji V. Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: Third National Health and Nutrition Examination Survey, 1988–1994. J Trace Elem Med Biol. 2003;17:13–8. https://doi.org/10.1016/S0946-672X(03)80040-8.

    Article  PubMed  Google Scholar 

  25. Benedetti S, Tagliamonte MC, Catalani S, et al. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod Biomed Online. 2012;25:300–6. https://doi.org/10.1016/j.rbmo.2012.05.011.

    Article  CAS  PubMed  Google Scholar 

  26. Madding CI, Jacob M, Ramsay VP, Sokol RZ. Serum and semen zinc levels in normozoospermie and oligozoospermic men. Ann Nutr Metab. 1986;30:213–8. https://doi.org/10.1159/000177196.

    Article  CAS  PubMed  Google Scholar 

  27. Calderón B, Gómez-Martín JM, Cuadrado-Ayuso M, et al. Circulating zinc and copper levels are associated with sperm quality in obese men after metabolic surgery: a pilot study. Nutrients. 2020;12:3354. https://doi.org/10.3390/nu12113354.

    Article  CAS  PubMed Central  Google Scholar 

  28. Gibson RS, King JC, Lowe N (2016) A review of dietary zinc recommendations. Food Nutr. Bull. 37

  29. Institute of Medicine F and NB Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC Natl Acad Press 2001

Download references

Acknowledgements

The guidance of Dr. Esther Eisenberg is greatly acknowledged, as is the valuable contribution of each and every MOXI study participant.

Funding

This project was supported by the Eunice Kennedy Shriver National Institute for Children Health and Development, National Institutes of Health, through Grant K23 HD097307 (JFK) and the CREST Program R25 HD075737 (to NFS). This work was supported by National Institutes of Health (NIH)/Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Grants U10HD077844 (to A.Z.S), U10HD077680 (to K.R.H, V.L.B), 1U10 HD077841 (to MIC), U10HD027049 (to C.C); U10HD038992 (to R.S.L); U10HD039005 (to M.P.D, R.U., S.K.); and U10HD055925 (to H.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Study design: All authors.

Statistical analysis: JK, AS, FS.

Data analysis: FS, JK, AS.

Manuscript: All authors.

Corresponding author

Correspondence to Jennifer F. Knudtson.

Ethics declarations

Conflict of interest

Dr. Diamond reports other support from Advanced Reproductive Care, LLC outside the submitted work. Dr. Steiner reports support from Prima-Temp outside the submitted work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knudtson, J.F., Sun, F., Coward, R.M. et al. The relationship of plasma antioxidant levels to semen parameters: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. J Assist Reprod Genet 38, 3005–3013 (2021). https://doi.org/10.1007/s10815-021-02301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02301-2

Keywords

Navigation