Skip to main content
Log in

Effect of oxygen and glucose availability during in vitro maturation of bovine oocytes on development and gene expression

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Oxygen tension during the in vitro maturation (IVM) of oocytes is important for oocyte developmental competence. A conflict exists in the literature as to whether low oxygen during IVM is detrimental or beneficial to the oocyte. Many research and clinical labs use higher than physiological oxygen tension perhaps believing that low-oxygen tension is detrimental to oocyte development. Other studies show that glucose is important if low-oxygen tension is used during maturation. In this study, we look at the link between low oxygen and glucose availability during IVM to resolve misconceptions around low-oxygen tension during IVM.

Methods

Bovine cumulus oocyte complexes (COCs) were matured at 20% vs 7% oxygen in media containing differing glucose concentrations or varying availability. Cleavage and blastocyst rates were recorded. RT-PCR determined expression levels of metabolic, oxygen, and stress-responsive genes following IVM.

Results

Embryo development in 7% oxygen groups with 2.3mM glucose/low glucose availability was lower than 20% oxygen groups. Under 7% oxygen with 5.6mM glucose or higher glucose availability, rates were restored to those seen in 20% oxygen. Expressions of BNIP3, ENO1, GAPDH, and SLC2A1, were upregulated in 7% oxygen/low glucose, compared to 20% oxygen groups. BNIP3 expression was higher in 7% oxygen group with low glucose availability compared to the 20% groups.

Conclusion

Oocyte developmental competence is negatively impacted following IVM in low oxygen when glucose availability is limited. Glucose concentration and physical culture conditions need to be considered when comparing the effects of different oxygen concentrations during IVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Child TJ, Abdul-Jalil AK, Gulekli B, Tan SL. In vitro maturation and fertilization of oocytes from unstimulated normal ovaries, polycystic ovaries, and women with polycystic ovary syndrome. Fertil Steril. 2001;76(5):936–42.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar P, Sait SF, Sharma A, Kumar M. Ovarian hyperstimulation syndrome. J Hum Reprod Sci. 2011;4(2):70–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vuong LN, Ho VNA, Ho TM, Dang VQ, Phung TH, Giang NH, Le AH, Pham TD, Wang R, Norman RJ, Smitz J, Gilchrist RB, Mol BW. Effectiveness and safety of in vitro maturation of oocytes versus in vitro fertilisation in women with high antral follicle count: study protocol for a randomised controlled trial. BMJ Open. 2018;8(12):e023413-e023413.

  4. Maman E, Meirow D, Brengauz M, Raanani H, Dor J, Hourvitz A. Luteal phase oocyte retrieval and in vitro maturation is an optional procedure for urgent fertility preservation. Fertil Steril. 2011;95(1):64–7.

    Article  PubMed  Google Scholar 

  5. Ellenbogen A, Shavit T, Shalom-Paz E. IVM results are comparable and may have advantages over standard IVF. Facts, views & vision in ObGyn. 2014;6(2):77–80.

    CAS  Google Scholar 

  6. Wu B, Zan L, Quan F, Wang H. A Novel Discipline in Embryology — Animal Embryo Breeding, in New Discoveries in Embryology. In: Wu B, editor. IntechOpen: Open Access; 2015.

  7. Lonergan P, Fair T. Maturtion of oocytes in vitro. Anim Rev Annu Biosci. 2016;4(1):255–68.

    Article  CAS  Google Scholar 

  8. Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 61(2):234–48. https://doi.org/10.1002/mrd.1153.

  9. Ealy A, Wooldridge LK, SR MC. Post-transfer consequences of in vitro-produced embryos in cattle. Anim Sci J, 2019. 97(6):2568. https://doi.org/10.1093/jas/skz116.

  10. Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland MP. Oocyte and Embryo Quality: Effect of Origin, Culture Conditions and Gene Expression Patterns. Reprod Domest Anim. 2003;38(4):259–67.

    Article  CAS  PubMed  Google Scholar 

  11. Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: Implications for subsequent development. Theriogenology. 2000;53(1):21–34.

    Article  CAS  PubMed  Google Scholar 

  12. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. Reproduction (Cambridge, England). 1993;99(2):673–9.

    Article  CAS  Google Scholar 

  13. Mastroianni L, Jones R. Oxygen tension within the rabbit fallopian tube. Reproduction (Cambridge, England). 1965;9(1):99–102.

    Article  Google Scholar 

  14. Van Blerkom J. Epigenetic influences on oocyte developmental competence: perifollicular vascularity and intrafollicular oxygen. J Assist Reprod Genet. 1998;15(5):226–34.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huey S, Abuhamad A, Barroso G, Kolm P, Mayer J, Oehninger S. Perifollicular blood flow doppler indices, but not follicular pO2, pCO2, or pH, predict oocyte developmental competence in in vitro fertilization. Fertil Steril. 1999;72(4):707–12.

    Article  CAS  PubMed  Google Scholar 

  16. Tatemoto H, Muto N, Sunagawa I, Shinjo A, Nakata T. Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biol Reprod. 2004;71(4):1150–7.

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    Article  PubMed  Google Scholar 

  18. Agarwal A, Prabakaran S, Allamaneni SSSR. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod BioMed Online. 2006;12(5):630–3.

    Article  CAS  PubMed  Google Scholar 

  19. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–32.

    Article  PubMed  Google Scholar 

  20. Hashimoto S, Minami N, Takakura R, Yamada M, Imai H, Kashima N. Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes. Mol Reprod Dev. 2000;57(4):353–60.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson MH, Nasresfahani MH. Radical solutions and cultural problems: Could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? BioEssays. 1994;16(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  22. Alonso-Alvarez C, Bertrand S, Devevey G, Prost J, Faivre B, Sorci G. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol Lett. 2004;7(5):363–8.

    Article  Google Scholar 

  23. Rinaudo PF, et al. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86(4):1265.e1–1265.e36.

    Article  Google Scholar 

  24. Sutton-McDowall M, Gilchrist R, Thompson J. Glucosamine supplementation during in vitro maturation leads to perturbed developmental capacity of bovine cumulus oocyte complexes. Reprod Fertil Dev. 2005;17(2):300.

    Article  Google Scholar 

  25. Leese HJ, Lenton EA. Glucose and lactate in human follicular fluid: concentrations and interrelationships. Hum Reprod (Oxford). 1990;5(8):915–9.

    Article  CAS  Google Scholar 

  26. Johnson AE, Lane M, Gardiner DK, Diekman MA, Krisher RL. Changes in follicular fluid environment between 5mm and 10mm follicles. Annual Conference of the Society for the Study of Reproduction, 2001.

  27. Hashimoto S. Application of In Vitro Maturation to Assisted Reproductive Technology. J Reprod Dev. 2009;55(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  28. Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction (Cambridge, England). 2002;124(5):675–81.

    Article  CAS  Google Scholar 

  29. Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. PNAS. 1967;58(2):560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rieger D, Loskutoff NM. Changes in the metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocytes in vitro. J Reprod Fertil. 1994;100(1):257–62.

    Article  CAS  PubMed  Google Scholar 

  31. Saito T, Hiroi M, Kato T. Development of glucose utilization studied in single oocytes and preimplantation embryos from mice. Biol Reprod. 1994;50(2):266–70.

    Article  CAS  PubMed  Google Scholar 

  32. Dan-Goor M, Sasson S, Davarashvili A, Almagor M. Expression of glucose transporter and glucose uptake in human oocytes and preimplantation embryos. Hum Reprod (Oxford). 1997;12(11):2508–10.

    Article  CAS  Google Scholar 

  33. Khurana NK. and. Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology. 2000;54(5):741–56.

    Article  CAS  PubMed  Google Scholar 

  34. Clark AR, Stokes YM, Lane M, Thompson JG. Mathematical modelling of oxygen concentration in bovine and murine cumulus–oocyte complexes. Reproduction (Cambridge, England). 2006;131(6):999–1006.

    Article  CAS  Google Scholar 

  35. Thompson JG, Brown HM, Kind KL, Russell DL. The Ovarian Antral Follicle: Living on the Edge of Hypoxia or Not? Biol Reprod. 2015;92(6):153-153.

  36. Downs SM, Utecht AM. Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biol Reprod. 1999;60(6):1446–52.

    Article  CAS  PubMed  Google Scholar 

  37. Spindler RE, Pukazhenthi BS, Wildt DE. Oocyte metabolism predicts the development of cat embryos to blastocyst in vitro. Mol Reprod Dev. 2000;56(2):163–71.

    Article  CAS  PubMed  Google Scholar 

  38. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction (Cambridge, England). 2010;139(4):685–95.

    Article  CAS  Google Scholar 

  39. Xie H-L, Wang YB, Jiao GZ, Kong DL, Li Q, Li H, Zheng LL, Tan JH. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes. Sci Rep. 2016;6(1):20764-20764.

  40. Downs SM, Hudson ED. Energy substrates and the completion of spontaneous meiotic maturation. Zygote (Cambridge). 2000;8(4):339–51.

    Article  CAS  Google Scholar 

  41. Urner F, Sakkas D. Influence of glucose on protein tyrosine phosphorylation in mouse spermatozoa. Hum Reprod (Oxford). 1999;14(Suppl_3):13-13.

  42. Bermejo-Álvarez P, Lonergan P, Rizos D, Guttierez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod BioMed Online. 2009;20(3):341–9.

    Article  PubMed  Google Scholar 

  43. Sutton-McDowell ML, Gilchrist RB, Thompson JG. Cumulus expansion and glucose utilisation by bovine cumulus–oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction. 2004;128(3):313–9.

    Article  Google Scholar 

  44. Dunning KR, Watson LN, Sharkey DJ, Brown HM, Norman RJ, Thompson JG, Robker RL, Russell DL. Molecular filtration properties of the mouse expanded cumulus matrix: controlled supply of metabolites and extracellular signals to cumulus cells and the oocyte. Biol Reprod. 2012;87(4):89-89.

  45. Tesarík J. Comparison of acrosome reaction-inducing activities of human cumulus oophorus, follicular fluid and ionophore A23187 in human sperm populations of proven fertilizing ability in vitro. J Reprod Fertil. 1985;74(2):383–8.

    Article  PubMed  Google Scholar 

  46. Hong S-J, Chiu PC-N, Lee K-F, Tse JY-M, Ho P-C, Yueng WS-B. Cumulus cells and their extracellular matrix affect the quality of the spermatozoa penetrating the cumulus mass. Fertil Steril. 2009;92(3):971–8.

    Article  CAS  PubMed  Google Scholar 

  47. Carrell DT, Middleton RG, Peterson CM, Jones KP, Urry RL. Role of the cumulus in the selection of morphologically normal sperm and induction of the acrosome reaction during human in vitro fertilization. Arch Androl. 1993;31(2):133–7.

    Article  CAS  PubMed  Google Scholar 

  48. Haidri AA, Miller IM, Gwatkin RB. Culture of mouse oocytes in vitro, using a system without oil or protein. J Reprod Fertil. 1971;26(3):409–11.

    Article  CAS  PubMed  Google Scholar 

  49. Gwatkin RB, Haidri AA. Oxygen requirements for the maturation of hamster oocytes. J Reprod Fertil. 1974;37(1):127–9.

    Article  CAS  PubMed  Google Scholar 

  50. Banwell KM, Lane M, Russell DL, Kind KL, Thompson JG. Oxygen concentration during mouse oocyte in vitro maturation affects embryo and fetal development. Hum Reprod (Oxford). 2007;22(10):2768–75.

    Article  CAS  Google Scholar 

  51. Preis KA, Seidel GE, Gardner DK. Reduced oxygen concentration improves the developmental competence of mouse oocytes following in vitro maturation. Mol Reprod Dev. 2007;74(7):893–903.

    Article  CAS  PubMed  Google Scholar 

  52. Pinyopummintr T, Bavister BD. Optimum gas atmosphere for in vitro maturation and in vitro fertilization of bovine oocytes. Theriogenology. 1995;44(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  53. de Castro e Paula LA, Hansen PJ. Interactions between oxygen tension and glucose concentration that modulate actions of heat shock on bovine oocytes during in vitro maturation. Theriogenology. 2007;68(5):763–70.

    Article  PubMed  Google Scholar 

  54. Watson AJ, de Sousa P, Caveney A, Barcroft LC, Natale D, Urquhart J, et al. Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number, and apoptosis. Biol Reprod. 2000;62(2):355–64.

    Article  CAS  PubMed  Google Scholar 

  55. Fagbohun CF, Down SM. Maturation of the mouse oocyte-cumulus cell complex: stimulation by lectins. Biol Reprod. 1990;42(3):413–23.

    Article  CAS  PubMed  Google Scholar 

  56. Vanderhyden BC, Caron PJ, Buccione R, Eppig JJ. Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev Biol. 1990;140(2):307–17.

    Article  CAS  PubMed  Google Scholar 

  57. Society, I.E.T.S, Manual of the International Embryo Transfer Society: A procedural guide and general information for the use of embryo transfer technology, emphasizing sanitary precautions. 1998, The Society, 1998.

  58. Kind KL, Tam KKY, Banwell KM, Gauld AD, Russell DL, Macpherson AM, et al. Oxygen-regulated gene expression in murine cumulus cells. Reprod Fertil Dev. 2015;27(2):407–18.

    Article  CAS  PubMed  Google Scholar 

  59. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell (Cambridge). 2012;148(3):399–408.

    Article  CAS  Google Scholar 

  60. Bashan N, Burdett E, Hundal HS, Klip A. Regulation of glucose transport and GLUT1 glucose transporter expression by O2 in muscle cells in culture. Am J Phys Cell Phys. 1992;262(3):682–90.

    Google Scholar 

  61. Ebert BL, Firth JD, Ratcliffe PJ. Hypoxia and Mitochondrial Inhibitors Regulate Expression of Glucose Transporter-1 via Distinct Cis-acting Sequences. J Biol Chem. 1995;270(49):29083–9.

    Article  CAS  PubMed  Google Scholar 

  62. Baddela VS, Sharma A, Michaelis M, Vanselow J. HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells. Sci Rep. 2020; 10(1):3906-3906.

  63. Kind KL, Banwell KM, Gebhardt KM, Macpherson A, Gauld A, Russell DL, et al. Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus-oocyte complexes. Reprod Fertil Dev. 2013;25(2):426–38.

    Article  CAS  PubMed  Google Scholar 

  64. Thompson J, Lane M, Gilchrist R. Metabolism of the bovine cumulus-oocyte complex and influence on subsequent developmental competence. Society of Reproduction and Fertility supplement. 2007;64:179–90.

    CAS  PubMed  Google Scholar 

  65. Chen L, Russell PT, Larsen WJ. Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass. Mol Reprod Dev. 1993;34:87–93.

    Article  CAS  PubMed  Google Scholar 

  66. Tirone E, Siracusa G, Hascall VC, Frajese G, Sulustri A. Oocytes preserve the ability of mouse cumulus cells in culture to synthesize hyaluronic acid and dermatan sulfate. Dev Biol. 1993;160(2):405–12.

    Article  CAS  PubMed  Google Scholar 

  67. Downs SM, Humpherson PG, Leese HJ. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway. Biol Reprod. 1998;58(4):1084–94.

    Article  CAS  PubMed  Google Scholar 

  68. Gardner DK. Lactate production by the mammalian blastocyst: Manipulating the microenvironment for uterine implantation and invasion? BioEssays. 2015;37(4):364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dumollard R, Ward Z, Carroll J, Duchen MR. Regulation of redox metabolism in the mouse oocyte and embryo. Development (Cambridge). 2006;134(3):455–65.

    Article  Google Scholar 

  70. Redmann M, Darley-Usmar V, Zhang J. The role of autophagy, mitophagy and lysosomal functions in modulating bioenergetics and survival in the context of redox and proteotoxic damage: implications for neurodegenerative diseases. Aging Dis. 2016;7(2):150–62.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Redmann M, Dodson M, Boyer-Guittaut M, Darley-Usmar V, Zhang J. Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol. 2014;53:127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Quinsay MN, Lee Y, Rikka S, Sayen RM, Molkentin JD, Gottleib RA, et al. Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. J Mol Cell Cardiol. 2009;48(6):1146–56.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Thompson JGE, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573–8.

    Article  CAS  PubMed  Google Scholar 

  74. Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Burgel T. Normoxic induction of the hypoxia-inducible factor 1α by insulin and interleukin-1β involves the phosphatidylinositol 3-kinase pathway. FEBS Lett. 2002;512(1):157–62.

    Article  CAS  PubMed  Google Scholar 

  75. Turhan A, Pereira MT, Schuler G, Bleul U, Kowalewski MP. Hypoxia-inducible factor (HIF1alpha) inhibition modulates cumulus cell function and affects bovine oocyte maturation in vitro. Biol Reprod. 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kylie R. Dunning.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitty, A., Kind, K.L., Dunning, K.R. et al. Effect of oxygen and glucose availability during in vitro maturation of bovine oocytes on development and gene expression. J Assist Reprod Genet 38, 1349–1362 (2021). https://doi.org/10.1007/s10815-021-02218-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02218-w

Keywords

Navigation