Skip to main content

Advertisement

Log in

Changes in thyroid function during controlled ovarian hyperstimulation (COH) and its impact on assisted reproduction technology (ART) outcomes: a systematic review and meta-analysis

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

To investigate the thyroid function changes during controlled ovarian hyperstimulation (COH) and ascertain its impact on reproductive outcomes.

Methods

We conducted meta-analysis in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive literature search was performed to identify studies reported changes in thyroid parameters during COH. We analyzed thyroid-stimulating hormone (TSH) levels, free thyroxin (fT4) levels, changes in estrogens (E2), thyroxine-binding globulin (TBG), relative risks (RRs) of clinical pregnancy rate (CPR), live birth rate (LBR), and mean difference (MD) of TSH increment between the miscarriage group and ongoing pregnancy group.

Results

This meta-analysis included fifteen individual studies (n = 1665 subjects). At the end of COH, the mean TSH (2.53 mIU/L; 95% CI, 2.19 to 2.88; I2 = 92.9%) exceeded the upper limit (2.5 mIU/L) and remained above the threshold until one month following embryo transfer (ET). Thyroxin decreased from baseline to the end of COH (−0.18 ng/l; 95% CI, −0.35 to 0.00; I2 = 92.2%). The CPR and LBR of patients with TSH exceeding the cutoff after COH were significantly lower than those of patients with TSH below the threshold (CPR: RR, 0.62; 95% CI, 0.47 to 0.82; I2 = 0.0% and LBR: RR, 0.64; 95% CI, 0.44 to 0.92; I2 = 0.0%). The MD of the increment in TSH levels between the miscarriage and ongoing pregnancy groups was 0.40 mIU/L (95% CI, 0.15 to 0.65; I2 = 0.0%).

Conclusions

This meta-analysis shows that TSH increases and fT4 decreases during COH. COH-induced thyroid disorder impairs reproductive outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary material of this article.

References

  1. De Leo S, Pearce EN. Autoimmune thyroid disease during pregnancy. Lancet Diabetes Endocrinol. 2018;6:575–86.

    Article  PubMed  Google Scholar 

  2. Korevaar TIM, Medici M, Visser TJ, Peeters RP. Thyroid disease in pregnancy: new insights in diagnosis and clinical management. Nat Rev Endocrinol. 2017;13:610–22.

    Article  PubMed  CAS  Google Scholar 

  3. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489–99.

    Article  PubMed  CAS  Google Scholar 

  4. Negro R. Thyroid and assisted reproduction technologies: a brief clinical update with recommendations for practice. Endocr Metab Immune Disord Drug Targets. 2018;18:194–200.

    Article  PubMed  CAS  Google Scholar 

  5. Poppe K, Velkeniers B, Glinoer D. The role of thyroid autoimmunity in fertility and pregnancy. Nat Clin Pract Endocrinol Metab. 2008;4:394–405.

    Article  PubMed  CAS  Google Scholar 

  6. Poppe K, Glinoer D, Tournaye H, Schiettecatte J, Devroey P, van Steirteghem A, et al. Impact of ovarian hyperstimulation on thyroid function in women with and without thyroid autoimmunity. J Clin Endocrinol Metab. 2004;89:3808–12.

    Article  PubMed  CAS  Google Scholar 

  7. Negro R, Formoso G, Coppola L, Presicce G, Mangieri T, Pezzarossa A, et al. Euthyroid women with autoimmune disease undergoing assisted reproduction technologies: the role of autoimmunity and thyroid function. J Endocrinol Investig. 2007;30:3–8.

    Article  CAS  Google Scholar 

  8. Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev. 2010;31:702–55.

    Article  PubMed  CAS  Google Scholar 

  9. Poppe K, Unuane D, D'Haeseleer M, Tournaye H, Schiettecatte J, Haentjens P, et al. Thyroid function after controlled ovarian hyperstimulation in women with and without the hyperstimulation syndrome. Fertil Steril. 2011;96:241–5.

    Article  PubMed  CAS  Google Scholar 

  10. Mintziori G, Goulis DG, Toulis KA, Venetis CA, Kolibianakis EM, Tarlatzis BC. Thyroid function during ovarian stimulation: a systematic review. Fertil Steril. 2011;96:780–5.

    Article  PubMed  CAS  Google Scholar 

  11. Du YJ, Xin X, Cui N, Jiang L, Yang AM, Hao GM, et al. Effects of controlled ovarian stimulation on thyroid stimulating hormone in infertile women. Eur J Obstet Gynecol Reprod Biol. 2019;234:207–12.

    Article  PubMed  CAS  Google Scholar 

  12. Benaglia L, Busnelli A, Somigliana E, Leonardi M, Vannucchi G, De Leo S, et al. Incidence of elevation of serum thyroid-stimulating hormone during controlled ovarian hyperstimulation for in vitro fertilization. Eur J Obstet Gynecol Reprod Biol. 2014;173:53–7.

    Article  PubMed  CAS  Google Scholar 

  13. Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid. 2017;27:315–89.

    Article  PubMed  Google Scholar 

  14. Busnelli A, Somigliana E, Ferrari S, Filippi F, Vannucchi G, Fugazzola L, et al. The long-term impact of controlled ovarian hyperstimulation on thyroid function. Endocr Pract. 2016;22:389–95.

    Article  PubMed  Google Scholar 

  15. Gracia CR, Morse CB, Chan G, Schilling S, Prewitt M, Sammel MD, et al. Thyroid function during controlled ovarian hyperstimulation as part of in vitro fertilization. Fertil Steril. 2012;97:585–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Busnelli A, Somigliana E, Benaglia L, Sarais V, Ragni G, Fedele L. Thyroid axis dysregulation during in vitro fertilization in hypothyroid-treated patients. Thyroid. 2014;24:1650–5.

    Article  PubMed  CAS  Google Scholar 

  17. Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update. 2014;20:884–904.

    Article  PubMed  CAS  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.

    Article  PubMed  Google Scholar 

  19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Muller AF, Verhoeff A, Mantel MJ, De Jong FH, Berghout A. Decrease of free thyroxine levels after controlled ovarian hyperstimulation. J Clin Endocrinol Metab. 2000;85:545–8.

    Article  PubMed  CAS  Google Scholar 

  21. Poppe K, Glinoer D, Tournaye H, Schiettecatte J, Haentjens P, Velkeniers B. Thyroid function after assisted reproductive technology in women free of thyroid disease. Fertil Steril. 2005;83:1753–7.

    Article  PubMed  Google Scholar 

  22. Reinblatt S, Herrero B, Correa JA, Shalom-Paz E, Ata B, Wiser A, et al. Thyroid stimulating hormone levels rise after assisted reproductive technology. J Assist Reprod Genet. 2013;30:1347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alnot-Burette J, Nakib I, Lipere A, Delemer B, Graesslin O. Thyroid function for infertile women during ovarian hyperstimulation as part of IVF. Gynecol Obstet Fertil. 2016;44:156–62.

    Article  PubMed  CAS  Google Scholar 

  24. Gizzo S, Noventa M, Quaranta M, Vitagliano A, Esposito F, Andrisani A, et al. The potential role of GnRH agonists and antagonists in inducing thyroid physiopathological changes during IVF. Reprod Sci. 2016;23:515–23.

    Article  PubMed  CAS  Google Scholar 

  25. Abdul Karim AK, Azrai Abu M, Chelliah B, Mohd Razi ZR, Omar MH, Othman H, et al. Maternal thyroid function in women undergoing controlled ovarian hyperstimulation during in-vitro fertilization and its relation to reproductive outcome. Minerva Ginecol. 2017;69:431–7.

    PubMed  Google Scholar 

  26. Mintziori G, Goulis DG, Kolibianakis EM, Slavakis A, Bosdou J, Grimbizis G, et al. Thyroid function and autoimmunity during ovarian stimulation for intracytoplasmic sperm injection. Reprod Fertil Dev. 2017;29:603–8.

    Article  PubMed  CAS  Google Scholar 

  27. Fumarola A, Grani G, Romanzi D, Del Sordo M, Bianchini M, Aragona A, et al. Thyroid function in infertile patients undergoing assisted reproduction. Am J Reprod Immunol. 2013;70:336–41.

    Article  PubMed  CAS  Google Scholar 

  28. De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:2543–65.

    Article  PubMed  CAS  Google Scholar 

  29. Bartalena L. Recent achievements in studies on thyroid hormone-binding proteins. Endocr Rev. 1990;11:47–64.

    Article  PubMed  CAS  Google Scholar 

  30. La Rosa S, Celato N, Uccella S, Capella C. Detection of gonadotropin-releasing hormone receptor in normal human pituitary cells and pituitary adenomas using immunohistochemistry. Virchows Arch. 2000;437:264–9.

    Article  PubMed  Google Scholar 

  31. Wakim AN, Polizotto SL, Buffo MJ, Marrero MA, Burholt DR. Thyroid hormones in human follicular fluid and thyroid hormone receptors in human granulosa cells. Fertil Steril. 1993;59:1187–90.

    Article  PubMed  CAS  Google Scholar 

  32. Rosales M, Nunez M, Abdala A, Mesch V, Mendeluk G. Thyroid hormones in ovarian follicular fluid: association with oocyte retrieval in women undergoing assisted fertilization procedures. JBRA Assist Reprod. 2020;24:245–249.

  33. Ji J, Liu Y, Tong XH, Luo L, Ma J, Chen Z. The optimum number of oocytes in IVF treatment: an analysis of 2455 cycles in China. Hum Reprod. 2013;28:2728–34.

    Article  PubMed  Google Scholar 

  34. Aghajanova L, Stavreus-Evers A, Lindeberg M, Landgren BM, Sparre LS, Hovatta O. Thyroid-stimulating hormone receptor and thyroid hormone receptors are involved in human endometrial physiology. Fertil Steril. 2011;95:230–7 237 e231-232.

    Article  PubMed  CAS  Google Scholar 

  35. Cai YY, Lin N, Zhong LP, Duan HJ, Dong YH, Wu Z, et al. Serum and follicular fluid thyroid hormone levels and assisted reproductive technology outcomes. Reprod Biol Endocrinol. 2019;17:90.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Practice Committee of the American Society for Reproductive M. Subclinical hypothyroidism in the infertile female population: a guideline. Fertil Steril. 2015;104:545–53.

    Article  Google Scholar 

  37. American College of O, Gynecology. ACOG practice bulletin. Thyroid disease in pregnancy. Number 37, August 2002. American College of Obstetrics and Gynecology. Int J Gynaecol Obstet. 2002;79:171–80.

    Article  Google Scholar 

  38. Detti L, Uhlmann RA, Fletcher NM, Diamond MP, Saed GM. Endometrial signaling pathways during ovarian stimulation for assisted reproduction technology. Fertil Steril. 2013;100:889–94.

    Article  PubMed  CAS  Google Scholar 

  39. Wang H, Gao H, Chi H, Zeng L, Xiao W, Wang Y, et al. Effect of levothyroxine on miscarriage among women with normal thyroid function and thyroid autoimmunity undergoing in vitro fertilization and embryo transfer: a randomized clinical trial. JAMA. 2017;318:2190–8.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang W, Xiao X, Zhang J, Wang W, Wu J, Peng L, et al. Clinical outcomes of frozen embryo versus fresh embryo transfer following in vitro fertilization: a meta-analysis of randomized controlled trials. Arch Gynecol Obstet. 2018;298:259–72.

    Article  PubMed  Google Scholar 

  41. Wong KM, Mastenbroek S, Repping S. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil Steril. 2014;102:19–26.

    Article  PubMed  CAS  Google Scholar 

  42. Horcajadas JA, Minguez P, Dopazo J, Esteban FJ, Dominguez F, Giudice LC, et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab. 2008;93:4500–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all investigators and participants in this study, especially the guidance of professor Yu. We acknowledge that Danpei Li provided data sources and technical support during the analysis of this study. We also acknowledge the support from Endocrinology Division of Tongji Hospital.

Funding

This study was supported by grants from the National Key R&D Program of China (2016YFC0901203) and the National Natural Science Foundation of China (81974109, 81570740).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Yu and D. Li had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Li.

Acquisition, analysis, or interpretation of data: Li and Hu.

Drafting of the manuscript: Li.

Critical revision of the manuscript for important intellectual content: All authors. Obtained funding: the National Key R&D Program of China (2016YFC0901203) and the National Natural Science Foundation of China (81974109, 81570740).

Statistical analysis: Li and Hu.

Administrative, technical, or material support: Yu.

Study supervision: Yu.

Corresponding author

Correspondence to Danpei Li.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1259 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Hu, S., Meng, X. et al. Changes in thyroid function during controlled ovarian hyperstimulation (COH) and its impact on assisted reproduction technology (ART) outcomes: a systematic review and meta-analysis. J Assist Reprod Genet 38, 2227–2235 (2021). https://doi.org/10.1007/s10815-021-02206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02206-0

Keywords

Navigation