Skip to main content
Log in

Migration speed of nucleolus precursor bodies in human male pronuclei: a novel parameter for predicting live birth

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To study the relationship between the migration speed of nucleolus precursor bodies (NPBs) in male and female pronuclei (mPN; fPN) and human embryo development during assisted reproduction.

Methods

The migration speed of 263 NPBs from 47 zygotes was quantitated, and embryonic development was observed until the blastocyst stage. The central coordinates of mPN, fPN, and NPBs were noted at multiple timepoints. Then, the distance traveled by the NPBs between two sequential images was measured, and migration speed was calculated. Additionally, we investigated the relationship between NPB migration speed and ploidy status (N = 33) or live birth/ongoing pregnancy (LB/OP) (N = 60) after assisted reproduction.

Results

The NPB migration speed in both mPN and fPN was significantly faster in the zygotes that developed into blastocysts (N = 25) than that in the zygotes that arrested (N = 22). The timing of blastulation was negatively correlated with NPB migration speed in the mPN. Faster NPB migration was significantly correlated with LB/OP. In multivariate logistic analysis, NPB migration speed in the mPN was the only morphokinetic parameter associated with LB/OP. In a receiver-operating characteristic curve analysis of LB/OP by the NPB migration speed in the mPN, the cut-off value was 4.56 μm/h. When this cut-off value was applied to blastocysts with preimplantation genetic testing for aneuploidy, 100% of the blastocysts faster than or equal to the cut-off value were euploid.

Conclusion

The NPBs migrated faster in zygotes having the potential to develop into a blastocyst, and eventually into a baby. This predictor could be an attractive marker for non-invasive embryo selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP. RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A. 2015;112:E5237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kyogoku H, Kitajima TS, Miyano T. Nucleolus precursor body (NPB): a distinct structure in mammalian oocytes and zygotes. Nucleus. 2014;5:493–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fulka H, Rychtarova J, Loi P. The nucleolus-like and precursor bodies of mammalian oocytes and embryos and their possible role in post-fertilization centromere remodelling. Biochem Soc Trans. 2020;48:581–93.

    Article  CAS  PubMed  Google Scholar 

  4. Fulka H, Aoki F. Nucleolus precursor bodies and ribosome biogenesis in early mammalian embryos: old theories and new discoveries. Biol Reprod. 2016;94:143.

    Article  PubMed  CAS  Google Scholar 

  5. Kresoja-Rakic J, Santoro R. Nucleolus and rRNA gene chromatin in early embryo development. Trends Genet. 2019;35:868–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J Jr. The maternal nucleolus is essential for early embryonic development in mammals. Science. 2008;319:613–6.

    Article  CAS  PubMed  Google Scholar 

  7. Otsuki J, Iwasaki T, Tsuji Y, Katada Y, Sato H, Tsutsumi Y, et al. Potential of zygotes to produce live births can be identified by the size of the male and female pronuclei just before their membranes break down. Reprod Med Biol. 2017;16:200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Otsuki J, Iwasaki T, Enatsu N, Katada Y, Furuhashi K, Shiotani M. Noninvasive embryo selection: kinetic analysis of female and male pronuclear development to predict embryo quality and potential to produce live birth. Fertil Steril. 2019;112:874–81.

    Article  CAS  PubMed  Google Scholar 

  9. Araki E, Itoi F, Honnma H, Asano Y, Oguri H, Nishikawa K. Correlation between the pronucleus size and the potential for human single pronucleus zygotes to develop into blastocysts: 1PN zygotes with large pronuclei can expect an embryo development to the blastocyst stage that is similar to the development of 2PN zygotes. J Assist Reprod Genet. 2018;35:817–23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Coticchio G, Mignini Renzini M, Novara PV, Lain M, De Ponti E, Turchi D, et al. Focused time-lapse analysis reveals novel aspects of human fertilization and suggests new parameters of embryo viability. Hum Reprod. 2018;33:23–31.

    Article  CAS  PubMed  Google Scholar 

  11. ALPHA Scientists In Reproductive Medicine; ESHRE Special Interest Group Embryology. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod BioMed Online. 2011;22:632–46.

    Article  Google Scholar 

  12. Mio Y. Morphological analysis of human embryonic development using time-lapse cinematography. J Mamm Ova Res. 2006;23:27–35.

    Article  Google Scholar 

  13. Montag M, Liebenthron J, Köster M. Which morphological scoring system is relevant in human embryo development? Placenta. 2011;32(Suppl 3):S252–6.

    Article  PubMed  Google Scholar 

  14. Inoue T, Yamashita Y, Tsujimoto Y, Yamamoto S, Taguchi S, Hirao K, et al. The association of follicular fluid volume with human oolemma stretchability during intracytoplasmic sperm injection. Clin Exp Reprod Med. 2017;44:126–31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Inoue T, Sugimoto H, Okubo K, Emi N, Matsushita Y, Kojima K, et al. Successful pregnancy after intracytoplasmic sperm injection with testicular spermatozoa transported only under refrigeration. Reprod Med Biol. 2010;9:173–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond 1999. Carnforth: Parthenon Press; 1999. p. 377–88.

    Google Scholar 

  17. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67:73–80.

    Article  CAS  PubMed  Google Scholar 

  18. World Health Organization. International statistical classification of diseases and related health problems. 10th revision, Fifth edition, 2016.

  19. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  20. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    Article  PubMed  Google Scholar 

  21. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum; 1988.

    Google Scholar 

  22. Cohen J. A power primer. Psychol Bull. 1992;112:155–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ogushi S, Saitou M. The nucleolus in the mouse oocyte is required for the early step of both female and male pronucleus organization. J Reprod Dev. 2010;56:495–501.

    Article  PubMed  Google Scholar 

  24. Jachowicz JW, Santenard A, Bender A, Muller J, Torres-Padilla ME. Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev. 2013;27:2427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fulka H, Langerova A. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition. Development. 2014;141:1694–704.

    Article  CAS  PubMed  Google Scholar 

  26. Kyogoku H, Fulka J Jr, Wakayama T, Miyano T. De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes. Development. 2014;141:2255–9.

    Article  CAS  PubMed  Google Scholar 

  27. Zatsepina O, Baly C, Chebrout M, Debey P. The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the cajal (coiled) body. Dev Biol. 2003;253:66–83.

    Article  CAS  PubMed  Google Scholar 

  28. Lavrentyeva E, Shishova K, Kagarlitsky G, Zatsepina O. Localisation of RNAs and proteins in nucleolar precursor bodies of early mouse embryos. Reprod Fertil Dev. 2017;29:509–20.

    Article  CAS  PubMed  Google Scholar 

  29. Koné MC, Fleurot R, Chebrout M, Debey P, Beaujean N, Bonnet-Garnier A. Three-dimensional distribution of UBF and Nopp140 in relationship to ribosomal DNA transcription during mouse preimplantation development. Biol Reprod. 2016;94:95.

    Article  PubMed  CAS  Google Scholar 

  30. Bonnet-Garnier A, Kiêu K, Aguirre-Lavin T, Tar K, Flores P, Liu Z, et al. Three-dimensional analysis of nuclear heterochromatin distribution during early development in the rabbit. Chromosoma. 2018;127:387–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Svarcova O, Dinnyes A, Polgar Z, Bodo S, Adorjan M, Meng Q, et al. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines. Mol Reprod Dev. 2009;76:132–41.

    Article  CAS  PubMed  Google Scholar 

  32. García-Rodríguez A, Gosálvez J, Agarwal A, Roy R, Johnston S. DNA damage and repair in human reproductive cells. Int J Mol Sci. 2018;20:31.

    Article  PubMed Central  CAS  Google Scholar 

  33. Hinz JM, Czaja W. Facilitation of base excision repair by chromatin remodeling. DNA Repair (Amst). 2015;36:91–7.

    Article  CAS  Google Scholar 

  34. Kawamura K, Qi F, Meng Q, Hayashi I, Kobayashi J. Nucleolar protein nucleolin functions in replication stress-induced DNA damage responses. J Radiat Res. 2019;60:281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet. 2008;17:1922–37.

    Article  CAS  PubMed  Google Scholar 

  36. Wdowiak A, Bakalczuk S, Bakalczuk G. The effect of sperm DNA fragmentation on the dynamics of the embryonic development in intracytoplasmatic sperm injection. Reprod Biol. 2015;15:94–100.

    Article  PubMed  Google Scholar 

  37. Horta F, Catt S, Ramachandran P, Vollenhoven B, Temple-Smith P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum Reprod. 2020;35:529–44.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Wei D, Zhu Y, Gao Y, Yan J, Chen ZJ. Rates of live birth after mosaic embryo transfer compared with euploid embryo transfer. J Assist Reprod Genet. 2019;36:165–72.

    Article  PubMed  Google Scholar 

  39. Boynukalin FK, Gultomruk M, Cavkaytar S, Turgut E, Findikli N, Serdarogullari M, et al. Parameters impacting the live birth rate per transfer after frozen single euploid blastocyst transfer. PLoS One. 2020;15:e0227619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pederson T. Growth factors in the nucleolus? J Cell Biol. 1998;143:279–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scott L. Pronuclear scoring as a predictor of embryo development. Reprod BioMed Online. 2003;6:201–14.

    Article  PubMed  Google Scholar 

  42. Aguilar J, Motato Y, Escribá MJ, Ojeda M, Muñoz E, Meseguer M. The human first cell cycle: impact on implantation. Reprod BioMed Online. 2014;28:475–84.

    Article  PubMed  Google Scholar 

  43. Ezoe K, Ohata K, Morita H, Ueno S, Miki T, Okimura T, et al. Prolonged blastomere movement induced by the delay of pronuclear fading and first cell division adversely affects pregnancy outcomes after fresh embryo transfer on day 2: a time-lapse study. Reprod BioMed Online. 2019;38:659–68.

    Article  PubMed  Google Scholar 

  44. Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26:16–42.

    Article  CAS  PubMed  Google Scholar 

  45. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33:745–56.

    Article  CAS  PubMed  Google Scholar 

  46. Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107:220–8.e5.

    Article  CAS  PubMed  Google Scholar 

  47. Papale L, Fiorentino A, Montag M, Tomasi G. The zygote. Hum Reprod. 2012;27(Suppl 1):i22–49.

    Article  PubMed  Google Scholar 

  48. Wei D, Liu JY, Sun Y, Shi Y, Zhang B, Liu JQ, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet. 2019;393:1310–8.

    Article  PubMed  Google Scholar 

  49. Santos-Ribeiro S, Mackens S, Popovic-Todorovic B, Racca A, Polyzos NP, Van Landuyt L, et al. The freeze-all strategy versus agonist triggering with low-dose hCG for luteal phase support in IVF/ICSI for high responders: a randomized controlled trial. Hum Reprod. 2020;35:2808–18.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kayoko Hirao for performing ICSI, cryopreservation, and warming. We thank Shogo Shiratsuki, PhD (Merck Biopharma Co., Ltd.) for critical review and scientific discussion on the manuscript. We thank Shannon Wyszomierski, PhD for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T. I. designed this study, performed tracking NPBs and PNs, collected and analyzed data, and drafted the manuscript. S. T. annotated morphokinetic parameters. Y. T. performed biopsy for PGT-A. T. I., S. T., and Y. T. performed ICSI, cryopreservation, and warming. M. U. contributed to the data analysis and critically reviewed the manuscript. K. M. and Y. Y. performed ovarian stimulation, oocyte retrieval, blastocyst transfer, and luteal support. All authors approved the final manuscript.

Corresponding author

Correspondence to Taketo Inoue.

Ethics declarations

Ethics approval

All procedures were performed in accordance with the 1964 Helsinki declaration. This study was approved by the Umeda Fertility Clinic Institutional Review Board (181215).

Consent to participate

Informed consent was obtained from all patients.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, T., Taguchi, S., Uemura, M. et al. Migration speed of nucleolus precursor bodies in human male pronuclei: a novel parameter for predicting live birth. J Assist Reprod Genet 38, 1725–1736 (2021). https://doi.org/10.1007/s10815-021-02172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02172-7

Keywords

Navigation