Skip to main content

Advertisement

Log in

Disease-inducing potential of two leukemic cell lines in a xenografting model

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Cryopreserved ovarian tissue transplant restores ovarian function in young cancer patients after gonadotoxic treatment. However, leukemia is associated with increased risk of malignant cell transmission. We aimed to assess the tumor-inducing potential of two different leukemic cell lines when xenografted to immunodeficient mice.

Methods

Fifty-four female immunodeficient mice were grafted with either 100, 200, 500, 1000, and 10,000 chronic myeloid leukemia in blast crisis (BV-173) cells or relapsed acute lymphoblastic leukemia (RCH-ACV) cells, embedded inside a fibrin scaffold along with 50,000 human ovarian stromal cells. Two mice per cell line received the fibrin matrix without leukemic cells as negative controls. Clinical signs of disease were monitored for 20 weeks. Grafts, liver tissue, and masses were collected for macroscopic analysis and gene expression of BCR-ABL1 and E2A-PBX fusion transcripts present in BV-173 and RCH-ACV respectively.

Results

BV-173 cells: Mice grafted with 100, 200, or 500 cells showed no sign of disease after and were negative for BCR-ABL1 expression. Three of the 5 animals grafted with 1000 cells and all mice with 10,000 cells developed disease and showed BCR-ABL1-positive expression. RCH-ACV cells: Two out of 4 mice grafted with 100 cells developed disease and were E2A-PBX1-positive. All the animals grafted with higher cell doses showed signs of disease and all but one were E2A-PBX1-positive.

Conclusion

The present work proves that the disease-inducing potential of BV-173 and RCH-ACV leukemic cells xenografted to SCID mouse peritoneum differs between cell lines, depending on cell number, type, status, and cytogenetic disease profile when ovarian tissue is harvested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson RA, Wallace WH. Antimullerian hormone, the assessment of the ovarian reserve, and the reproductive outcome of the young patient with cancer. Fertil Steril. 2013;99(6):1469–75. https://doi.org/10.1016/j.fertnstert.2013.03.014.

    Article  CAS  PubMed  Google Scholar 

  2. Dolmans M-M, Manavella DD. Recent advances in fertility preservation. J Obstet Gynaecol Res. 2018;0(0). https://doi.org/10.1111/jog.13818.

  3. Donnez J, Dolmans M-M. Fertility preservation in women. N Engl J Med. 2017;377(17):1657–65. https://doi.org/10.1056/NEJMra1614676.

    Article  PubMed  Google Scholar 

  4. Donnez J, Manavella DD, Dolmans MM. Techniques for ovarian tissue transplantation and results. Minerva Ginecol. 2018;70:424–31. https://doi.org/10.23736/S0026-4784.18.04228-4.

    Article  PubMed  Google Scholar 

  5. Donnez J, Dolmans MM. Fertility preservation in women. N Engl J Med. 2018;378(1533-4406):399–401.

    Google Scholar 

  6. Dolmans MM, Falcone T, Patrizio P. Importance of patient selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue. Fertil Steril. 2020;114(2):279–80. https://doi.org/10.1016/j.fertnstert.2020.04.050.

    Article  PubMed  Google Scholar 

  7. Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116(16):2908–14. https://doi.org/10.1182/blood-2010-01-265751.

    Article  CAS  PubMed  Google Scholar 

  8. Meirow D, Hardan I, Dor J, Fridman E, Elizur S, Ra’anani H, et al. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum Reprod. 2008;23(5):1007–13. https://doi.org/10.1093/humrep/den055.

    Article  PubMed  Google Scholar 

  9. Rosendahl M, Andersen MT, Ralfkiaer E, Kjeldsen L, Andersen MK, Andersen CY. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril. 2010;94(6):2186–90. https://doi.org/10.1016/j.fertnstert.2009.11.032.

    Article  PubMed  Google Scholar 

  10. Amiot C, Angelot-Delettre F, Zver T, Alvergnas-Vieille M, Saas P, Garnache-Ottou F, et al. Minimal residual disease detection of leukemic cells in ovarian cortex by eight-color flow cytometry. Hum Reprod. 2013;28(8):2157–67. https://doi.org/10.1093/humrep/det126.

    Article  CAS  PubMed  Google Scholar 

  11. Silber SJ, DeRosa M, Goldsmith S, Fan Y, Castleman L, Melnick J. Cryopreservation and transplantation of ovarian tissue: results from one center in the USA. J Assist Reprod Genet. 2018;35(12):2205–13. https://doi.org/10.1007/s10815-018-1315-1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bastings L, Beerendonk CC, Westphal JR, Massuger LF, Kaal SE, van Leeuwen FE, et al. Autotransplantation of cryopreserved ovarian tissue in cancer survivors and the risk of reintroducing malignancy: a systematic review. Hum Reprod Update. 2013;19(5):483–506. https://doi.org/10.1093/humupd/dmt020.

    Article  CAS  PubMed  Google Scholar 

  13. Dolmans MM, Masciangelo R. Risk of transplanting malignant cells in cryopreserved ovarian tissue. Minerva Ginecol. 2018;70(4):436–43. https://doi.org/10.23736/S0026-4784.18.04233-8.

    Article  PubMed  Google Scholar 

  14. Meirow D, Ra’anani H, Shapira M, Brenghausen M, Derech Chaim S, Aviel-Ronen S, et al. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria. Fertil Steril. 2016;106(2):467–74. https://doi.org/10.1016/j.fertnstert.2016.04.031.

    Article  PubMed  Google Scholar 

  15. Shapira M, Raanani H, Barshack I, Amariglio N, Derech-Haim S, Marciano MN, et al. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil Steril. 2017;109(1):48–53. https://doi.org/10.1016/j.fertnstert.2017.09.001.

    Article  PubMed  Google Scholar 

  16. Zver T, Alvergnas-Vieille M, Garnache-Ottou F, Roux C, Amiot C. A new method for evaluating the risk of transferring leukemic cells with transplanted cryopreserved ovarian tissue. J Assist Reprod Genet. 2015;32(8):1263–6. https://doi.org/10.1007/s10815-015-0512-4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dolmans MM, Luyckx V, Donnez J, Andersen CY, Greve T. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril. 2013;99(6):1514–22. https://doi.org/10.1016/j.fertnstert.2013.03.027.

    Article  PubMed  Google Scholar 

  18. Committee IP, Kim SS, Donnez J, Barri P, Pellicer A, Patrizio P, et al. Recommendations for fertility preservation in patients with lymphoma, leukemia, and breast cancer. J Assist Reprod Genet. 2012;29(6):465–8. https://doi.org/10.1007/s10815-012-9786-y.

    Article  Google Scholar 

  19. Rosendahl M, Greve T, Andersen CY. The safety of transplanting cryopreserved ovarian tissue in cancer patients: a review of the literature. J Assist Reprod Genet. 2013;30(1):11–24. https://doi.org/10.1007/s10815-012-9912-x.

    Article  PubMed  Google Scholar 

  20. Diaz-Garcia C, Herraiz S, Such E, Andres MDM, Villamon E, Mayordomo-Aranda E, et al. Dexamethasone does not prevent malignant cell reintroduction in leukemia patients undergoing ovarian transplant: risk assessment of leukemic cell transmission by a xenograft model. Hum Reprod. 2019;34(8):1485–93. https://doi.org/10.1093/humrep/dez115.

    Article  CAS  PubMed  Google Scholar 

  21. Soares M, Saussoy P, Sahrari K, Amorim CA, Donnez J, Dolmans MM. Is transplantation of a few leukemic cells inside an artificial ovary able to induce leukemia in an experimental model? J Assist Reprod Genet. 2015;32(4):597–606. https://doi.org/10.1007/s10815-015-0438-x.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vanacker J, Camboni A, Dath C, Van Langendonckt A, Dolmans MM, Donnez J, et al. Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting. Fertil Steril. 2011;96(2):379–83 e3. https://doi.org/10.1016/j.fertnstert.2011.05.075.

    Article  CAS  PubMed  Google Scholar 

  23. Dolmans MM, Michaux N, Camboni A, Martinez-Madrid B, Van Langendonckt A, Nottola SA, et al. Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum Reprod. 2006;21(2):413–20. https://doi.org/10.1093/humrep/dei320.

    Article  CAS  PubMed  Google Scholar 

  24. Luyckx V, Dolmans MM, Vanacker J, Scalercio SR, Donnez J, Amorim CA. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J Ovarian Res. 2013;6(1):83. https://doi.org/10.1186/1757-2215-6-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vanacker J, Luyckx V, Dolmans MM, Des Rieux A, Jaeger J, Van Langendonckt A, et al. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials. 2012;33(26):6079–85. https://doi.org/10.1016/j.biomaterials.2012.05.015.

    Article  CAS  PubMed  Google Scholar 

  26. Dolz S, Barragan E, Fuster O, Llop M, Cervera J, Such E, et al. Novel real-time polymerase chain reaction assay for simultaneous detection of recurrent fusion genes in acute myeloid leukemia. J Mol Diagn. 2013;15(5):678–86. https://doi.org/10.1016/j.jmoldx.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  27. McGuirk J, Yan Y, Childs B, Fernandez J, Barnett L, Jagiello C, Collins N et al. Differential growth patterns in SCID mice of patient-derived chronic myelogenous leukemias. Bone Marrow Transplant. 1998;22(4):367–74. https://doi.org/10.1038/sj.bmt.1701343.

  28. Luyckx V, Dolmans MM, Vanacker J, Legat C, Fortuno Moya C, Donnez J, et al. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril. 2014;101(4):1149–56. https://doi.org/10.1016/j.fertnstert.2013.12.025.

    Article  PubMed  Google Scholar 

  29. Yan Y, Salomon O, McGuirk J, Dennig D, Fernandez J, Jagiello C et al. Growth pattern and clinical correlation of subcutaneously inoculated human primary acute leukemias in severe combined immunodeficiency mice. Blood. 1996;88(8):3137–46.

  30. Meyer LH, Debatin KM. Diversity of human leukemia xenograft mouse models: implications for disease biology. Cancer Res. 2011;71(23):7141–4. https://doi.org/10.1158/0008-5472.CAN-11-1732.

    Article  CAS  PubMed  Google Scholar 

  31. Hermann BP, Sukhwani M Salati J, Sheng Y, Chu T, Orwig KE. Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum Reprod. 2011;26(12):3222–31. https://doi.org/10.1093/humrep/der343.

  32. Fujita K, Ohta H, Tsujimura A, Takao T, Miyagawa Y, Takada S, et al. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Invest. 2005;115(7):1855–61. https://doi.org/10.1172/JCI24189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jahnukainen K, Morris I, Roe S, Salmi TT, Makipernaa A, Pollanen P. A rodent model for testicular involvement in acute lymphoblastic leukaemia. Br J Cancer. 1993;67(5):885–92. https://doi.org/10.1038/bjc.1993.166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hou M, Andersson M, Zheng C, Sundblad A, Soder O, Jahnukainen K. Decontamination of leukemic cells and enrichment of germ cells from testicular samples from rats with Roser’s T-cell leukemia by flow cytometric sorting. Reproduction. 2007;134(6):767–79. https://doi.org/10.1530/REP-07-0240.

    Article  CAS  PubMed  Google Scholar 

  35. Gopakumar KG, Rajeswari B, Chandar R, Krishnankutty Nair R, Thankamony P. Spontaneous intramedullary hematoma and leukemic deposit in spinal cord causing acute onset paraplegia in a child with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65(8):e27075.

    Article  Google Scholar 

  36. Antony R, Roebuck D, Hann IM. Unusual presentations of acute lymphoid malignancy in children. J R Soc Med. 2004;97(3):125–7.

    Article  Google Scholar 

  37. Asano K, Wakabayashi H, Kikuchi N, Sashika H. Acute myeloid leukemia presenting with complete paraplegia and bilateral total blindness due to central nervous system involvement. Spinal Cord Ser Cases. 2016;2:15035. https://doi.org/10.1038/scsandc.2015.35.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yan Y, Wieman EA, Guan X, Jakubowski AA, Steinherz PG, O’Reilly RJ. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias. J Hematol Oncol. 2009;2:51. https://doi.org/10.1186/1756-8722-2-51.

  39. Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ, et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood. 1990;17(1):117–22.

    Article  Google Scholar 

  40. Frost BM, Forestier E, Gustafsson G, Nygren P, Hellebostad M, Jonmundsson G et al. Translocation t(1;19) is related to low cellular drug resistance in childhood acute lymphoblastic leukaemia. Leukemia. 2005;19(1):165–9. https://doi.org/10.1038/sj.leu.2403540.

  41. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. Pillars article: IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001. 410: 1107-1111. J Immunol. 2018;201(3):827–31.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mira Hryniuk, BA, for reviewing the English language of the manuscript, and Dolores Gonzalez for her technical assistance.

Funding

This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique, FNRS-PDR Convention T.0077.14, Télévie grant No. 7.6515.16F awarded to DDM and grant 5/4/150/5 awarded to MMD, Fonds Spéciaux de Recherche, Fondation St Luc, and Foundation Against Cancer, and donations from the Ferrero family. This study was also funded by the Regional Valencian Ministry of Education (PROMETEO/2018/137) and the Spanish Ministry of Science and Innovation (CP19/00141 for S.H. participation).

Author information

Authors and Affiliations

Authors

Contributions

DDM: performed PCR for the BV-173 cell line, interpreted results, and wrote the manuscript. SH: performed all experiments and PCR analyses for the RCH-ACV cell line, interpreted results, and revised the manuscript. MS: carried out experimental procedures for the BV-173 cell line. AB: performed surgery, PCR, and histological analysis for the RCH-ACV cell line. JD: prepared and revised the manuscript. AP: revised the manuscript. CDG: designed the study, interpreted results, and revised the manuscript. MMD: designed the study, performed experimental procedures, and revised the manuscript.

Corresponding author

Correspondence to Sonia Herraiz.

Ethics declarations

Ethics approval

The use of human tissue for this study was approved by the Institutional Review Board of both the Université Catholique de Louvain (2012/23MAR/125) and La Fe University Hospital (2011/0018). Animal welfare guidelines were approved by the Committee on Animal Research of both the Université Catholique de Louvain (2014/UCL/M.D./007) and the University of Valencia (Ref. 2015/VSC/PEA/0013).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manavella D. D. and Herraiz S. should be considered similar in author order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manavella, D.D., Herraiz, S., Soares, M. et al. Disease-inducing potential of two leukemic cell lines in a xenografting model. J Assist Reprod Genet 38, 1589–1600 (2021). https://doi.org/10.1007/s10815-021-02169-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02169-2

Keywords

Navigation