Skip to main content
Log in

Association of CPT1A gene polymorphism with the risk of gestational diabetes mellitus: a case-control study

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Gestational diabetes mellitus (GDM) is a growing public health problem worldwide and its etiology remains unclear. The pathophysiology of GDM is similar to that of type 2 diabetes (T2DM) and insulin resistance (IR) is the main reason for the development of GDM. Carnitine palmitoyltransferase 1A (CPT1A) is a candidate gene for metabolic disorders; however, the association of the CPT1A gene and GDM has not yet been studied. We aimed to explore whether single-nucleotide polymorphisms (SNPs) of the CPT1A gene could influence the risk of GDM.

Methods

We examined 18 single-nucleotide polymorphisms (SNPs) in the CPT1A gene and the risk of GDM in a nested case-control study of 334 GDM patients and 334 controls. The controls who had no GDM were randomly selected through matching to cases by age and residence.

Results

After adjusting the family history of diabetes, pre-pregnancy body mass index, and multiple comparison correction, the CPT1A rs2846194 and rs2602814 were associated with reduced GDM risk while rs59506005 was associated with elevated GDM risk. Moreover, the GGAC haplotype in the CPT1A gene (rs17399246 rs1016873 rs11228450 rs10896396) was associated with a reduced risk of GDM.

Conclusion

Our study provides evidence for an association between genetic polymorphisms in the CPT1A and the risk of GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Custom code.

References

  1. d’Emden MC. Reassessment of the new diagnostic thresholds for gestational diabetes mellitus: an opportunity for improvement. Med J Aust. 2014;201(4):209–11. https://doi.org/10.5694/mja14.00277.

    Article  PubMed  Google Scholar 

  2. Wu L, Cui L, Tam WH, Ma RC, Wang CC. Genetic variants associated with gestational diabetes mellitus: a meta-analysis and subgroup analysis. Sci Rep. 2016;6:30539. https://doi.org/10.1038/srep30539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30(Suppl 2):S112–9. https://doi.org/10.2337/dc07-s202.

    Article  CAS  PubMed  Google Scholar 

  4. Young BC, Ecker JL. Fetal macrosomia and shoulder dystocia in women with gestational diabetes: risks amenable to treatment? Curr Diab Rep. 2013;13(1):12–8. https://doi.org/10.1007/s11892-012-0338-8.

    Article  PubMed  Google Scholar 

  5. Fallah R, Golestan M, Karbasi SA. Low birth weight prevalence and its risk factors in Yazd—Iran. Early Hum Dev. 2008;84:S16. https://doi.org/10.1016/j.earlhumdev.2008.09.039.

    Article  Google Scholar 

  6. Mitanchez D, Yzydorczyk C, Siddeek B, Boubred F, Benahmed M, Simeoni U. The offspring of the diabetic mother-short- and long-term implications. Best Pract Res Clin Obstet Gynaecol. 2015;29(2):256–69. https://doi.org/10.1016/j.bpobgyn.2014.08.004.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Vargas L, Addison SS, Nistala R, Kurukulasuriya D, Sowers JR. Gestational diabetes and the offspring: implications in the development of the cardiorenal metabolic syndrome in offspring. Cardiorenal Med. 2012;2(2):134–42. https://doi.org/10.1159/000337734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duran A, Sáenz S, Torrejón MJ, Bordiú E, Del Valle L, Galindo M, et al. Introduction of IADPSG criteria for the screening and diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower cost in a large cohort of pregnant women: the St. Carlos Gestational Diabetes Study. Diabetes Care. 2014;37(9):2442–50. https://doi.org/10.2337/dc14-0179.

    Article  PubMed  Google Scholar 

  9. McIntyre HD, Colagiuri S, Roglic G, Hod M. Diagnosis of GDM: a suggested consensus. Best Pract Res Clin Obstet Gynaecol. 2015;29(2):194–205. https://doi.org/10.1016/j.bpobgyn.2014.04.022.

    Article  PubMed  Google Scholar 

  10. Adam S, Rheeder P. Screening for gestational diabetes mellitus in a South African population: prevalence, comparison of diagnostic criteria and the role of risk factors. S Afr Med J. 2017;107(6):523–7. https://doi.org/10.7196/SAMJ.2017.v107i6.12043.

    Article  CAS  PubMed  Google Scholar 

  11. Miailhe G, Kayem G, Girard G, Legardeur H, Mandelbrot L. Selective rather than universal screening for gestational diabetes mellitus? Eur J Obstet Gynecol Reprod Biol. 2015;191:95–100. https://doi.org/10.1016/j.ejogrb.2015.05.003.

    Article  PubMed  Google Scholar 

  12. Smirnakis KV, Plati A, Wolf M, Thadhani R, Ecker JL. Predicting gestational diabetes: choosing the optimal early serum marker. Am J Obstet Gynecol. 2007;196(4):410 e1–6; discussion e6-7. https://doi.org/10.1016/j.ajog.2006.12.011.

    Article  CAS  Google Scholar 

  13. Nanda S, Savvidou M, Syngelaki A, Akolekar R, Nicolaides KH. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat Diagn. 2011;31(2):135–41. https://doi.org/10.1002/pd.2636.

    Article  PubMed  Google Scholar 

  14. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene map: the 2005 update. Obesity. 2006;14(4):529–644. https://doi.org/10.1038/oby.2006.71.

    Article  PubMed  Google Scholar 

  15. Ding M, Chavarro J, Olsen S, Lin Y, Ley SH, Bao W, et al. Genetic variants of gestational diabetes mellitus: a study of 112 SNPs among 8722 women in two independent populations. Diabetologia. 2018;61(8):1758–68. https://doi.org/10.1007/s00125-018-4637-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doh KO, Kim YW, Park SY, Lee SK, Park JS, Kim JY. Interrelation between long-chain fatty acid oxidation rate and carnitine palmitoyltransferase 1 activity with different isoforms in rat tissues. Life Sci. 2005;77(4):435–43. https://doi.org/10.1016/j.lfs.2004.11.032.

    Article  CAS  PubMed  Google Scholar 

  17. McGarry J, Brown N. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997;244(1):1–14. https://doi.org/10.1111/j.1432-1033.1997.00001.x.

    Article  CAS  PubMed  Google Scholar 

  18. Madan P. Nonalcoholic fatty liver disease. CMAJ. 2005;173(7):734–5; author reply 5. https://doi.org/10.1503/cmaj.1050094.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maeda K, Ishihara K, Miyake K, Kaji Y, Kawamitsu H, Fujii M, et al. Inverse correlation between serum adiponectin concentration and hepatic lipid content in Japanese with type 2 diabetes. Metabolism. 2005;54(6):775–80. https://doi.org/10.1016/j.metabol.2005.01.020.

    Article  CAS  PubMed  Google Scholar 

  20. Seppälä-Lindroos A, Vehkavaara S, Häkkinen AM, Goto T, Westerbacka J, Sovijärvi A, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87(7):3023–8. https://doi.org/10.1210/jcem.87.7.8638.

    Article  PubMed  Google Scholar 

  21. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab. 2003;285(4):E906–16. https://doi.org/10.1152/ajpendo.00117.2003.

    Article  CAS  PubMed  Google Scholar 

  22. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54(3):603–8. https://doi.org/10.2337/diabetes.54.3.603.

    Article  CAS  PubMed  Google Scholar 

  23. McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977;60(1):265–70. https://doi.org/10.1172/jci108764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46(6):983–8. https://doi.org/10.2337/diab.46.6.983.

    Article  CAS  PubMed  Google Scholar 

  25. Levin MC, Monetti M, Watt MJ, Sajan MP, Stevens RD, Bain JR, et al. Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle. Am J Physiol Endocrinol Metab. 2007;293(6):E1772–81. https://doi.org/10.1152/ajpendo.00158.2007.

    Article  CAS  PubMed  Google Scholar 

  26. Hirota Y, Ohara T, Zenibayashi M, Kuno S, Fukuyama K, Teranishi T, et al. Lack of association of CPT1A polymorphisms or haplotypes on hepatic lipid content or insulin resistance in Japanese individuals with type 2 diabetes mellitus. Metabolism. 2007;56(5):656–61. https://doi.org/10.1016/j.metabol.2006.12.014.

    Article  CAS  PubMed  Google Scholar 

  27. Gupta Y, Kalra B, Baruah MP, Singla R, Kalra S. Updated guidelines on screening for gestational diabetes. Int J Women's Health. 2015;7:539–50. https://doi.org/10.2147/IJWH.S82046.

    Article  Google Scholar 

  28. Zhang X, Cal AJ, Borevitz JO. Genetic architecture of regulatory variation in Arabidopsis thaliana. Genome Res. 2011;21(5):725–33. https://doi.org/10.1101/gr.115337.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andersen MK, Jorsboe E, Sandholt CH, Grarup N, Jorgensen ME, Faergeman NJ, et al. Identification of novel genetic determinants of erythrocyte membrane fatty acid composition among Greenlanders. PLoS Genet. 2016;12(6):e1006119. https://doi.org/10.1371/journal.pgen.1006119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stefanovic-Racic M, Perdomo G, Mantell BS, Sipula IJ, Brown NF, O’Doherty RM. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol Endocrinol Metab. 2008;294(5):E969–77. https://doi.org/10.1152/ajpendo.00497.2007.

    Article  CAS  PubMed  Google Scholar 

  31. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009;58(3):550–8. https://doi.org/10.2337/db08-1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem. 1992;267(9):5802–10.

    Article  CAS  Google Scholar 

  33. Sol EM, Sargsyan E, Akusjarvi G, Bergsten P. Glucolipotoxicity in INS-1E cells is counteracted by carnitine palmitoyltransferase 1 over-expression. Biochem Biophys Res Commun. 2008;375(4):517–21. https://doi.org/10.1016/j.bbrc.2008.08.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the participants in the Taiyuan Birth Cohort Study for their enthusiastic support.

Funding

This study was funded by the National Natural Science Foundation of China (81703314) and the Scientific and Technological Innovation Project of Higher Education Institutions in Shanxi Province (2019L0439).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation was performed by Feifei Yang, Tianbi Han, Wenqiong Du, and Feng Zhao. Data collection and analysis were performed by Qingwen Ren, Mengzhu Guo, Jinbo Li, and Wangjun Li. Yongliang Feng was responsible for grammar editing. Suping Wang, Yawei Zhang, and Weiwei Wu were in charge of study supervision. The first draft of the manuscript was written by Qingwen Ren and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weiwei Wu.

Ethics declarations

Ethics approval

All study procedures were approved by the Human Investigation Committee at the Shanxi Medical University.

Consent to participate

Informed consent to inclusion in the study was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data and photographs.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Guo, M., Yang, F. et al. Association of CPT1A gene polymorphism with the risk of gestational diabetes mellitus: a case-control study. J Assist Reprod Genet 38, 1861–1869 (2021). https://doi.org/10.1007/s10815-021-02143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02143-y

Keywords

Navigation