Skip to main content

Advertisement

Log in

Fertility technologies and how to optimize laboratory performance to support the shortening of time to birth of a healthy singleton: a Delphi consensus

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To explore how the assisted reproductive technology (ART) laboratories can be optimized and standardized to enhance embryo culture and selection, to bridge the gap between standard practice and the new concept of shortening time to healthy singleton birth.

Methods

A Delphi consensus was conducted (January to July 2018) to assess how the ART laboratory could be optimized, in conjunction with existing guidelines, to reduce the time to a healthy singleton birth. Eight experts plus the coordinator discussed and refined statements proposed by the coordinator. The statements were distributed via an online survey to 29 participants (including the eight experts from step 1), who voted on their agreement/disagreement with each statement. Consensus was reached if ≥ 66% of participants agreed/disagreed with a statement. If consensus was not achieved for any statement, that statement was revised and the process repeated until consensus was achieved. Details of statements achieving consensus were communicated to the participants.

Results

Consensus was achieved for all 13 statements, which underlined the need for professional guidelines and standardization of lab processes to increase laboratory competency and quality. The most important points identified were the improvement of embryo culture and embryo assessment to shorten time to live birth through the availability of more high-quality embryos, priority selection of the most viable embryos and improved cryosurvival.

Conclusion

The efficiency of the ART laboratory can be improved through professional guidelines on standardized practices and optimized embryo culture environment, assessment, selection and cryopreservation methodologies, thereby reducing the time to a healthy singleton delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Materials availability

Any requests for data by qualified scientific and medical researchers for legitimate research purposes will be subject to Merck KGaA’s Data Sharing Policy. All requests should be submitted in writing to Merck KGaA’s data sharing portal https://www.merckgroup.com/en/research/our-approach-to-research-and-development/healthcare/clinical-trials/commitment-responsible-data-sharing.html. When Merck KGaA has a co-research, co-development, or co-marketing or co-promotion agreement, or when the product has been out-licensed, the responsibility for disclosure might be dependent on the agreement between parties. Under these circumstances, Merck KGaA will endeavour to gain agreement to share data in response to requests.

Code availability

Not applicable

References

  1. Bosch E, Bulletti C, Copperman AB, Fanchin R, Yarali H, Petta CA, et al. How time to healthy singleton delivery could affect decision-making during infertility treatment: a Delphi consensus. Reprod BioMed Online. 2019;38(1):118–30. https://doi.org/10.1016/j.rbmo.2018.09.019.

    Article  PubMed  Google Scholar 

  2. ESHRE Capri Workshop Group. Europe the continent with the lowest fertility. Hum Reprod Update. 2010;16(6):590–602. https://doi.org/10.1093/humupd/dmq023.

    Article  Google Scholar 

  3. Farquhar CM, Bhattacharya S, Repping S, Mastenbroek S, Kamath MS, Marjoribanks J, et al. Female subfertility. Nat Rev Dis Primers. 2019;5(1):7. https://doi.org/10.1038/s41572-018-0058-8.

    Article  PubMed  Google Scholar 

  4. American College of Obstetricians and Gynecologists Committee on Gynecologic Practice and Practice Committee. Female age-related fertility decline. Committee Opinion No. 589. Fertil Steril. 2014;101(3):633–4. https://doi.org/10.1016/j.fertnstert.2013.12.032.

    Article  Google Scholar 

  5. American College of Obstetricians and Gynecologists Committee on Gynecologic Practice; Practice Committee of the American Society for Reproductive Medicine. Female age-related fertility decline. Committee Opinion No. 589. Obstet Gynecol. 2014;123(3):719–21. https://doi.org/10.1097/01.AOG.0000444440.96486.61.

    Article  Google Scholar 

  6. Mol BW, Bossuyt PM, Sunkara SK, Garcia Velasco JA, Venetis C, Sakkas D, et al. Personalized ovarian stimulation for assisted reproductive technology: study design considerations to move from hype to added value for patients. Fertil Steril. 2018;109(6):968–79. https://doi.org/10.1016/j.fertnstert.2018.04.037.

    Article  PubMed  Google Scholar 

  7. Annual Capri Workshop Group. Towards a more pragmatic and wiser approach to infertility care. Human Reprod. 2019;34(7):1165–72. https://doi.org/10.1093/humrep/dez101.

    Article  Google Scholar 

  8. Goswami M, Hyslop LA, Murdoch AP. NHS-funded IVF: consequences of NICE implementation. Hum Fertil. 2013;16(2):121–7. https://doi.org/10.3109/14647273.2013.786840.

    Article  CAS  Google Scholar 

  9. Domar AD, Rooney K, Hacker MR, Sakkas D, Dodge LE. Burden of care is the primary reason why insured women terminate in vitro fertilization treatment. Fertil Steril. 2018;109(6):1121–6. https://doi.org/10.1016/j.fertnstert.2018.02.130.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferrick L, Lee YSL, Gardner DK. Reducing time to pregnancy and facilitating the birth of healthy children through functional analysis of embryo physiology. Biol Reprod. 2019;101(6):1124–39. https://doi.org/10.1093/biolre/ioz005.

    Article  PubMed  Google Scholar 

  11. Harbottle S, Hughes C, Cutting R, Roberts S, Brison D. Elective single embryo transfer: an update to UK Best Practice Guidelines. Hum Fertil. 2015;18(3):165–83.

    Article  Google Scholar 

  12. Hughes EG. Singleton birth at term: an old alarm or a new debate? Human Reprod. 2015;30(10):2254–6. https://doi.org/10.1093/humrep/dev205.

    Article  Google Scholar 

  13. Sunkara SK, Zheng W, D’Hooghe T, Longobardi S, Boivin J. Time as an outcome measure in fertility-related clinical studies: long-awaited. Human Reprod. 2020;35(8):1732–9. https://doi.org/10.1093/humrep/deaa138.

    Article  Google Scholar 

  14. Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care, 2017. Fertil Steril. 2017;108(3):393–406. https://doi.org/10.1016/j.fertnstert.2017.06.005.

    Article  PubMed  Google Scholar 

  15. Barnhart KT. Live birth is the correct outcome for clinical trials evaluating therapy for the infertile couple. Fertil Steril. 2014;101(5):1205–8. https://doi.org/10.1016/j.fertnstert.2014.03.026.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clarke JF, van Rumste MM, Farquhar CM, Johnson NP, Mol BW, Herbison P. Measuring outcomes in fertility trials: can we rely on clinical pregnancy rates? Fertil Steril. 2010;94(5):1647–51. https://doi.org/10.1016/j.fertnstert.2009.11.018.

    Article  PubMed  Google Scholar 

  17. Steurer J. The Delphi method: an efficient procedure to generate knowledge. Skelet Radiol. 2011;40(8):959–61. https://doi.org/10.1007/s00256-011-1145-z.

    Article  Google Scholar 

  18. Bulletti C, Allegra A, Mignini Renzini M, Vaiarelli A. How fixed versus variable gonadotropin dose during controlled ovarian stimulation could influence the management of infertility patients undergoing IVF treatment: a national Delphi consensus. Gynecol Endocrinol. 2020:1–9. https://doi.org/10.1080/09513590.2020.1770214.

  19. De los Santos MJ, Apter S, Coticchio G, Debrock S, Lundin K, Plancha CE, et al. Revised guidelines for good practice in IVF laboratories (2015). Human Reprod. 2016;31(4):685–6. https://doi.org/10.1093/humrep/dew016.

    Article  Google Scholar 

  20. Basile N, Caiazzo M, Meseguer M. What does morphokinetics add to embryo selection and in-vitro fertilization outcomes? Curr Opin Obstet Gynecol. 2015;27(3):193–200. https://doi.org/10.1097/gco.0000000000000166.

    Article  PubMed  Google Scholar 

  21. Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–9 e10. https://doi.org/10.1016/j.fertnstert.2012.08.016.

    Article  PubMed  Google Scholar 

  22. Cairo Consensus Group. ‘There is only one thing that is truly important in an IVF laboratory: everything’ Cairo Consensus Guidelines on IVF Culture Conditions. Reprod BioMed Online. 2020;40:33–60. https://doi.org/10.1016/j.rbmo.2019.10.003.

    Article  CAS  PubMed  Google Scholar 

  23. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7. https://doi.org/10.1093/molehr/gap012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod. 2008;14(12):679–90. https://doi.org/10.1093/molehr/gan066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kovacs GL, Montsko G, Zrinyi Z, Farkas N, Varnagy A, Bodis J. Non-invasive assessment of viability in human embryos fertilized in vitro. EJIFCC. 2016;27(2):112–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Murphy NM, Samarasekera TS, Macaskill L, Mullen J, Rombauts LJF. Genome sequencing of human in vitro fertilisation embryos for pathogenic variation screening. Sci Rep. 2020;10(1):3795. https://doi.org/10.1038/s41598-020-60704-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Concolino D, Degennaro E, Parini R. Delphi consensus on the current clinical and therapeutic knowledge on Anderson-Fabry disease. Eur J Intern Med. 2014;25(8):751–6. https://doi.org/10.1016/j.ejim.2014.07.009.

    Article  CAS  PubMed  Google Scholar 

  28. Girolomoni G, Altomare G, Ayala F, Berardesca E, Calzavara Pinton P, Chimenti S, et al. Differential management of mild-to-severe psoriasis with biologic drugs: an Italian Delphi consensus expert panel. J Dermatolog Treat. 2015;26(2):128–33. https://doi.org/10.3109/09546634.2014.907466.

    Article  CAS  PubMed  Google Scholar 

  29. Lassalle B, Testart J, Renard JP. Human embryo features that influence the success of cryopreservation with the use of 1,2 propanediol. Fertil Steril. 1985;44(5):645–51.

    Article  CAS  PubMed  Google Scholar 

  30. Edgar DH, Karani J, Gook DA. Increasing dehydration of human cleavage-stage embryos prior to slow cooling significantly increases cryosurvival. Reprod BioMed Online. 2009;19(4):521–5.

    Article  PubMed  Google Scholar 

  31. Alpha Scientists In Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Human Reprod. 2011;26(6):1270–83. https://doi.org/10.1093/humrep/der037.

    Article  Google Scholar 

  32. ISO. Quality management systems – requirements. Geneva: International Standards Organisation; 2015.

    Google Scholar 

  33. ISO. General requirements for the competence of testing and calibration laboratories. Geneva: International Standards Organisation; 2017.

    Google Scholar 

  34. ISO. Medical laboratories – requirements for quality and competence. Geneva: International Standards Organisation; 2012.

    Google Scholar 

  35. College of American Pathologists. Laboratory accreditation program. College of American Pathologists, Northfiled, IL. 2019. https://www.cap.org/laboratory-improvement/accreditation/laboratory-accreditation-program. Accessed 12 September 2019.

  36. European Union. Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. European Union: Strasbourg; 2004.

    Google Scholar 

  37. European Union. COMMISSION DIRECTIVE 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells. In: The Commission of the European Communities, editor. Brussels: European Commission; 2006.

  38. European Union. COMMISSION DIRECTIVE 2012/39/EU of 26 November 2012 amending Directive 2006/17/EC as regards certain technical requirements for the testing of human tissues and cells Text with EEA relevance. European Commission: Brussels; 2012.

    Google Scholar 

  39. European Union. COMMISSION DIRECTIVE 2006/86/EC of 24 October 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards traceability requirements, notification of serious adverse reactions and events and certain technical requirements for the coding, processing, preservation, storage and distribution of human tissues and cells. Brussels: European Commission; 2006.

  40. European Union. COMMISSION DIRECTIVE (EU) 2015/565 of 8 April 2015 amending Directive 2006/86/EC as regards certain technical requirements for the coding of human tissues and cells Text with EEA relevance. European Commission: Brussels; 2015.

    Google Scholar 

  41. European Union. Commission Directive (EU) 2015/566 of 8 April 2015 implementing Directive 2004/23/EC as regards the procedures for verifying the equivalent standards of quality and safety of imported tissues and cells. Text with EEA relevance. European Commission: Brussels; 2015.

    Google Scholar 

  42. Fabozzi G, Cimadomo D, Maggiulli R, Vaiarelli A, Ubaldi FM, Rienzi L. Which key performance indicators are most effective in evaluating and managing an in vitro fertilization laboratory? Fertil Steril. 2020;114(1):9–15. https://doi.org/10.1016/j.fertnstert.2020.04.054.

    Article  PubMed  Google Scholar 

  43. Hughes C. Association of clinical embryologists - guidelines on good practice in clinical embryology laboratories 2012. Hum Fertil. 2012;15(4):174–89. https://doi.org/10.3109/14647273.2012.747891.

    Article  Google Scholar 

  44. ESHRE. Special Interest Group of Embryology and Alpha Scientists in Reproductive Medicine. The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reprod BioMed Online. 2017;35(5):494–510. https://doi.org/10.1016/j.rbmo.2017.06.015.

    Article  Google Scholar 

  45. Forte M, Faustini F, Maggiulli R, Scarica C, Romano S, Ottolini C, et al. Electronic witness system in IVF-patients perspective. J Assist Reprod Genet. 2016;33(9):1215–22. https://doi.org/10.1007/s10815-016-0759-4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Calhaz-Jorge C, De Geyter C, Kupka MS, de Mouzon J, Erb K, Mocanu E, et al. Assisted reproductive technology in Europe, 2013: results generated from European registers by ESHRE. Human Reprod. 2017;32(10):1957–73. https://doi.org/10.1093/humrep/dex264.

    Article  CAS  Google Scholar 

  47. Society for Assisted Reproductive T, American Society for Reproductive M. Assisted reproductive technology in the United States: 2000 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril. 2004;81(5):1207–20. https://doi.org/10.1016/j.fertnstert.2004.01.017.

    Article  Google Scholar 

  48. Dyer S, Chambers GM, de Mouzon J, Nygren KG, Zegers-Hochschild F, Mansour R, et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum Reprod. 2016;31(7):1588–609. https://doi.org/10.1093/humrep/dew082.

    Article  CAS  PubMed  Google Scholar 

  49. Arvis P, Lehert P, Guivarc’h-Leveque A. Simple adaptations to the Templeton model for IVF outcome prediction make it current and clinically useful. Human Reprod. 2012;27(10):2971–8. https://doi.org/10.1093/humrep/des283.

    Article  CAS  Google Scholar 

  50. Rienzi L, Bariani F, Dalla Zorza M, Romano S, Scarica C, Maggiulli R, et al. Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF. Reprod BioMed Online. 2015;31(4):516–22. https://doi.org/10.1016/j.rbmo.2015.06.018.

    Article  PubMed  Google Scholar 

  51. Roy TK, Brandi S, Tappe NM, Bradley CK, Vom E, Henderson C, et al. Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method. Human Reprod. 2014;29(11):2431–8. https://doi.org/10.1093/humrep/deu214.

    Article  Google Scholar 

  52. Dal Canto M, Moutier C, Brambillasca F, Guglielmo MC, Bartolacci A, Fadini R, et al. The first report of pregnancies following blastocyst automated vitrification in Europe. J Gynecol Obstet Human Reprod. 2019;48(7):537–40. https://doi.org/10.1016/j.jogoh.2019.05.012.

    Article  Google Scholar 

  53. ESHRE Working Group on Time-lapse Technology. Good practice recommendations for the use of time-lapse technology. Hum Reprod Open. 2020;2:1–26. https://doi.org/10.1093/hropen/hoaa008.

    Article  Google Scholar 

  54. Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2(1):21. https://doi.org/10.1038/s41746-019-0096-y.

    Article  PubMed  PubMed Central  Google Scholar 

  55. McLernon DJ, Harrild K, Bergh C, Davies MJ, de Neubourg D, Dumoulin JC, et al. Clinical effectiveness of elective single versus double embryo transfer: meta-analysis of individual patient data from randomised trials. BMJ. 2010;341:c6945. https://doi.org/10.1136/bmj.c6945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thurin A, Hausken J, Hillensjo T, Jablonowska B, Pinborg A, Strandell A, et al. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med. 2004;351(23):2392–402. https://doi.org/10.1056/NEJMoa041032.

    Article  CAS  PubMed  Google Scholar 

  57. Park DS, Kim JW, Chang EM, Lee WS, Yoon TK, Lyu SW. Strategies in the transfer of varying grades of vitrified-warmed blastocysts in women aged over 35 years: a propensity-matched analysis. J Obstet Gynaecol Res. 2018;45(4):849–57. https://doi.org/10.1111/jog.13897.

    Article  PubMed  Google Scholar 

  58. Zech NH, Lejeune B, Puissant F, Vanderzwalmen S, Zech H, Vanderzwalmen P. Prospective evaluation of the optimal time for selecting a single embryo for transfer: day 3 versus day 5. Fertil Steril. 2007;88(1):244–6. https://doi.org/10.1016/j.fertnstert.2006.11.070.

    Article  PubMed  Google Scholar 

  59. Papanikolaou EG, Kolibianakis EM, Tournaye H, Venetis CA, Fatemi H, Tarlatzis B, et al. Live birth rates after transfer of equal number of blastocysts or cleavage-stage embryos in IVF. A systematic review and meta-analysis. Human Reprod. 2008;23(1):91–9. https://doi.org/10.1093/humrep/dem339.

    Article  Google Scholar 

  60. Glujovsky D, Farquhar C. Cleavage-stage or blastocyst transfer: what are the benefits and harms? Fertil Steril. 2016;106(2):244–50. https://doi.org/10.1016/j.fertnstert.2016.06.029.

    Article  PubMed  Google Scholar 

  61. Robinson RD. Success rates and pregnancy outcomes in thawed embryos transferred after extended culture: cryopreserved embryos versus cleavage stage cryopreserved embryos. Fertil Steril. 2018;110(1):59–60. https://doi.org/10.1016/j.fertnstert.2018.04.023.

    Article  PubMed  Google Scholar 

  62. Simón C, Gómez C, Cabanillas S, Vladimirov I, Castillón G, Giles J, et al. A 5-year multicentre randomized controlled trial comparing personalized, frozen and fresh blastocyst transfer in IVF. Reprod BioMed Online. 2020;41:402–15. https://doi.org/10.1016/j.rbmo.2020.06.002.

    Article  CAS  PubMed  Google Scholar 

  63. Glujovsky D, Farquhar C, Quinteiro Retamar AM, Alvarez Sedo CR, Blake D. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2016;6:CD002118. https://doi.org/10.1002/14651858.CD002118.pub5.

    Article  Google Scholar 

  64. Sfontouris IA, Martins WP, Nastri CO, Viana IG, Navarro PA, Raine-Fenning N, et al. Blastocyst culture using single versus sequential media in clinical IVF: a systematic review and meta-analysis of randomized controlled trials. J Assist Reprod Genet. 2016;33(10):1261–72. https://doi.org/10.1007/s10815-016-0774-5.

    Article  PubMed  PubMed Central  Google Scholar 

  65. La Marca A, Minasi MG, Sighinolfi G, Greco P, Argento C, Grisendi V, et al. Female age, serum antimullerian hormone level, and number of oocytes affect the rate and number of euploid blastocysts in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2017;108(5):777–83 e2. https://doi.org/10.1016/j.fertnstert.2017.08.029.

    Article  CAS  PubMed  Google Scholar 

  66. Motato Y, de los Santos MJ, Escriba MJ, Ruiz BA, Remohi J, Meseguer M. Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil Steril. 2016;105(2):376–84 e9. https://doi.org/10.1016/j.fertnstert.2015.11.001.

    Article  PubMed  Google Scholar 

  67. Esteves SC, Carvalho JF, Bento FC, Santos J. A novel predictive model to estimate the number of mature oocytes required for obtaining at least one euploid blastocyst for transfer in couples undergoing in vitro fertilization/intracytoplasmic sperm injection: the ART calculator. Front Endocrinol (Lausanne). 2019;10:99. https://doi.org/10.3389/fendo.2019.00099.

    Article  Google Scholar 

  68. Reed ML, Hamic A, Thompson DJ, Caperton CL. Continuous uninterrupted single medium culture without medium renewal versus sequential media culture: a sibling embryo study. Fertil Steril. 2009;92(5):1783–6. https://doi.org/10.1016/j.fertnstert.2009.05.008.

    Article  PubMed  Google Scholar 

  69. Mantikou E, Bontekoe S, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Hum Reprod Update. 2013;19(3):209. https://doi.org/10.1093/humupd/dms055.

    Article  CAS  PubMed  Google Scholar 

  70. Nastri CO, Nobrega BN, Teixeira DM, Amorim J, Diniz LMM, Barbosa MWP, et al. Low versus atmospheric oxygen tension for embryo culture in assisted reproduction: a systematic review and meta-analysis. Fertil Steril. 2016;106(1):95–104 e17. https://doi.org/10.1016/j.fertnstert.2016.02.037.

    Article  CAS  PubMed  Google Scholar 

  71. Garcia-Martinez S, Sanchez Hurtado MA, Gutierrez H, Sanchez Margallo FM, Romar R, Latorre R, et al. Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. Mol Hum Reprod. 2018;24(5):260–70. https://doi.org/10.1093/molehr/gay008.

    Article  CAS  PubMed  Google Scholar 

  72. Morin SJ. Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? J Assist Reprod Genet. 2017;34(3):309–14. https://doi.org/10.1007/s10815-017-0880-z.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Park H, Bergh C, Selleskog U, Thurin-Kjellberg A, Lundin K. No benefit of culturing embryos in a closed system compared with a conventional incubator in terms of number of good quality embryos: results from an RCT. Human Reprod. 2015;30(2):268–75. https://doi.org/10.1093/humrep/deu316.

    Article  CAS  Google Scholar 

  74. Paulson RJ, Reichman DE, Zaninovic N, Goodman LR, Racowsky C. Time-lapse imaging: clearly useful to both laboratory personnel and patient outcomes versus just because we can doesn't mean we should. Fertil Steril. 2018;109(4):584–91. https://doi.org/10.1016/j.fertnstert.2018.01.042.

    Article  PubMed  Google Scholar 

  75. Ebner T, Shebl O, Moser M, Mayer RB, Arzt W, Tews G. Group culture of human zygotes is superior to individual culture in terms of blastulation, implantation and life birth. Reprod BioMed Online. 2010;21(6):762–8.

    Article  CAS  PubMed  Google Scholar 

  76. Rebollar-Lazaro I, Matson P. The culture of human cleavage stage embryos alone or in groups: effect upon blastocyst utilization rates and implantation. Reprod Biol. 2010;10(3):227–34.

    Article  PubMed  Google Scholar 

  77. Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, et al. Standardization of grading embryo morphology. Fertil Steril. 2010;94(3):1152–3. https://doi.org/10.1016/j.fertnstert.2010.05.042.

    Article  PubMed  Google Scholar 

  78. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21. https://doi.org/10.1038/nbt.1686.

    Article  CAS  PubMed  Google Scholar 

  79. Santos Filho E, Noble JA, Poli M, Griffiths T, Emerson G, Wells D. A method for semi-automatic grading of human blastocyst microscope images. Human Reprod. 2012;27(9):2641–8. https://doi.org/10.1093/humrep/des219.

    Article  CAS  Google Scholar 

  80. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100(2):412–9 e5. https://doi.org/10.1016/j.fertnstert.2013.04.021.

    Article  PubMed  Google Scholar 

  81. Machtinger R, Racowsky C. Morphological systems of human embryo assessment and clinical evidence. Reprod BioMed Online. 2013;26(3):210–21. https://doi.org/10.1016/j.rbmo.2012.10.021.

    Article  PubMed  Google Scholar 

  82. Manna C, Nanni L, Lumini A, Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod BioMed Online. 2013;26(1):42–9. https://doi.org/10.1016/j.rbmo.2012.09.015.

    Article  PubMed  Google Scholar 

  83. Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Human Reprod. 2019;34(6):1011–8. https://doi.org/10.1093/humrep/dez064.

    Article  CAS  Google Scholar 

  84. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Human Reprod. 2011;26(10):2658–71. https://doi.org/10.1093/humrep/der256.

    Article  Google Scholar 

  85. Adamson GD, Abusief ME, Palao L, Witmer J, Palao LM, Gvakharia M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil Steril. 2016;105(2):369–75.

    Article  PubMed  Google Scholar 

  86. Aparicio-Ruiz B, Basile N, Perez Albala S, Bronet F, Remohi J, Meseguer M. Automatic time-lapse instrument is superior to single-point morphology observation for selecting viable embryos: retrospective study in oocyte donation. Fertil Steril. 2016;106(6):1379–85 e10. https://doi.org/10.1016/j.fertnstert.2016.07.1117.

    Article  PubMed  Google Scholar 

  87. Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–94 e5. https://doi.org/10.1016/j.fertnstert.2014.07.738.

    Article  PubMed  Google Scholar 

  88. Freour T, Le Fleuter N, Lammers J, Splingart C, Reignier A, Barriere P. External validation of a time-lapse prediction model. Fertil Steril. 2015;103(4):917–22. https://doi.org/10.1016/j.fertnstert.2014.12.111.

    Article  PubMed  Google Scholar 

  89. Kirkegaard K, Campbell A, Agerholm I, Bentin-Ley U, Gabrielsen A, Kirk J, et al. Limitations of a time-lapse blastocyst prediction model: a large multicentre outcome analysis. Reprod BioMed Online. 2014;29(2):156–8. https://doi.org/10.1016/j.rbmo.2014.04.011.

    Article  PubMed  Google Scholar 

  90. Basile N, Vime P, Florensa M, Aparicio Ruiz B, Garcia Velasco JA, Remohi J, et al. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Human Reprod. 2015;30(2):276–83. https://doi.org/10.1093/humrep/deu331.

    Article  CAS  Google Scholar 

  91. Athayde Wirka K, Chen AA, Conaghan J, Ivani K, Gvakharia M, Behr B, et al. Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril. 2014;101(6):1637–48 e1-5. https://doi.org/10.1016/j.fertnstert.2014.02.050.

    Article  PubMed  Google Scholar 

  92. Liu Y, Chapple V, Roberts P, Matson P. Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil Steril. 2014;102(5):1295–300 e2. https://doi.org/10.1016/j.fertnstert.2014.07.1235.

    Article  PubMed  Google Scholar 

  93. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escriba MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98(6):1458–63. https://doi.org/10.1016/j.fertnstert.2012.07.1135.

    Article  PubMed  Google Scholar 

  94. Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod BioMed Online. 2017;34(2):137–46. https://doi.org/10.1016/j.rbmo.2016.11.008.

    Article  CAS  PubMed  Google Scholar 

  95. Zhan Q, Ye Z, Clarke R, Rosenwaks Z, Zaninovic N. Direct unequal cleavages: embryo developmental competence, genetic constitution and clinical outcome. PLoS One. 2016;11(12):e0166398. https://doi.org/10.1371/journal.pone.0166398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Freour T, Dessolle L, Lammers J, Lattes S, Barriere P. Comparison of embryo morphokinetics after in vitro fertilization-intracytoplasmic sperm injection in smoking and nonsmoking women. Fertil Steril. 2013;99(7):1944–50. https://doi.org/10.1016/j.fertnstert.2013.01.136.

    Article  PubMed  Google Scholar 

  97. Wolff HS, Fredrickson JR, Walker DL, Morbeck DE. Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Human Reprod. 2013;28(7):1776–82. https://doi.org/10.1093/humrep/det102.

    Article  CAS  Google Scholar 

  98. Mastenbroek S, van der Veen F, Aflatoonian A, Shapiro B, Bossuyt P, Repping S. Embryo selection in IVF. Human Reprod. 2011;26(5):964–6. https://doi.org/10.1093/humrep/der050.

    Article  Google Scholar 

  99. Wong KM, Mastenbroek S, Repping S. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil Steril. 2014;102(1):19–26. https://doi.org/10.1016/j.fertnstert.2014.05.027.

    Article  CAS  PubMed  Google Scholar 

  100. De Vos A, Van Landuyt L, Santos-Ribeiro S, Camus M, Van de Velde H, Tournaye H, et al. Cumulative live birth rates after fresh and vitrified cleavage-stage versus blastocyst-stage embryo transfer in the first treatment cycle. Human Reprod. 2016;31(11):2442–9. https://doi.org/10.1093/humrep/dew219.

    Article  Google Scholar 

  101. Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update. 2012;18(5):536–54. https://doi.org/10.1093/humupd/dms016.

    Article  PubMed  Google Scholar 

  102. Alpha Scientists In Reproductive M. The Alpha consensus meeting on cryopreservation key performance indicators and benchmarks: proceedings of an expert meeting. Reprod BioMed Online. 2012;25(2):146–67. https://doi.org/10.1016/j.rbmo.2012.05.006.

    Article  Google Scholar 

  103. Debrock S, Peeraer K, Fernandez Gallardo E, De Neubourg D, Spiessens C, D’Hooghe TM. Vitrification of cleavage stage day 3 embryos results in higher live birth rates than conventional slow freezing: a RCT. Human Reprod. 2015;30(8):1820–30. https://doi.org/10.1093/humrep/dev134.

    Article  CAS  Google Scholar 

  104. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55. https://doi.org/10.1093/humupd/dmw038.

    Article  CAS  PubMed  Google Scholar 

  105. Gosden R. Cryopreservation: a cold look at technology for fertility preservation. Fertil Steril. 2011;96(2):264–8. https://doi.org/10.1016/j.fertnstert.2011.06.029.

    Article  PubMed  Google Scholar 

  106. Tiegs AW, Sun L, Neal SA, Morin SJ, Werner MD, Scott RT Jr. Worth the wait? Findings from culturing embryos through day 7. Fertil Steril. 2018;109(3):e9. https://doi.org/10.1016/j.fertnstert.2018.02.026.

    Article  Google Scholar 

  107. Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105(3):571–87. https://doi.org/10.1016/j.fertnstert.2016.01.035.

    Article  PubMed  Google Scholar 

  108. Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):2–22. https://doi.org/10.1093/humupd/dmv034.

    Article  CAS  PubMed  Google Scholar 

  109. Racowsky C, Jackson KV, Cekleniak NA, Fox JH, Hornstein MD, Ginsburg ES. The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil Steril. 2000;73(3):558–64. https://doi.org/10.1016/s0015-0282(99)00565-8.

    Article  CAS  PubMed  Google Scholar 

  110. McEvoy K B D, Roberts S, Turner C, Adeniyi T, Wood L, Wilson Y, Lloyd A, Critchlow D, Hunter H, Horne G. A one year retrospective analysis comparing live birth outcomes from embryos grown and transferred from an undisturbed time-lapse culture system with a conventional culture system. 32 Annual Meeting of ESHRE; Helsinki, Finland 2016. p. P-106.

  111. Zhang JQ, Li XL, Peng Y, Guo X, Heng BC, Tong GQ. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod BioMed Online. 2010;20(4):510–5. https://doi.org/10.1016/j.rbmo.2009.12.027.

    Article  PubMed  Google Scholar 

  112. Sundvall L, Ingerslev HJ, Breth Knudsen U, Kirkegaard K. Inter- and intra-observer variability of time-lapse annotations. Human Reprod. 2013;28(12):3215–21. https://doi.org/10.1093/humrep/det366.

    Article  Google Scholar 

  113. Hou W, Xu Y, Li R, Song J, Wang J, Zeng Y, et al. Role of aneuploidy screening in preimplantation genetic testing for monogenic diseases in young women. Fertil Steril. 2019;111(5):928–35. https://doi.org/10.1016/j.fertnstert.2019.01.017.

    Article  PubMed  Google Scholar 

  114. Munne S, Kaplan B, Frattarelli JL, Child T, Nakhuda G, Shamma FN, et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril. 2019;112:1071–1079.e7. https://doi.org/10.1016/j.fertnstert.2019.07.1346.

    Article  CAS  PubMed  Google Scholar 

  115. De Geyter C, Calhaz-Jorge C, Kupka MS, Wyns C, Mocanu E, Motrenko T, et al. ART in Europe, 2014: results generated from European registries by ESHRE: the European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Human Reprod. 2018;33(9):1586–601. https://doi.org/10.1093/humrep/dey242.

    Article  Google Scholar 

  116. Centers for Disease Control and Prevention. 2016 assisted reproductive technology - national summary report. 2018. https://www.cdc.gov/art/pdf/2016-report/ART-2016-National-Summary-Report.pdf. Accessed 5 Aug 2019.

Download references

Acknowledgments

Medical writing support was provided by Evelina Matekonyte and Steven Goodrick, inScience Communications, Springer Healthcare Ltd, UK, and funded by Merck Healthcare KGaA, an affiliate of Merck KGaA, Darmstadt, Germany. The Delphi consensus process was coordinated by Sanitanova Srl.

Funding

The work was funded by Merck KGaA, Darmstadt, Germany.

Author information

Authors and Affiliations

Authors

Contributions

GC contributed to project direction and coordination and provided the final approval of the version to be published. BB contributed to the consensus design and data analysis, assisted with drafting the article and revising it critically for important intellectual content, and provided the final approval of the version to be published. AC was an expert panel member and survey participant and assisted with editing and reviewing the manuscript and provided the final approval of the version to be published. MM was an expert panel member and survey participant and provided the final approval of the version to be published. DEM was an expert panel member and survey participant and edited and reviewed the manuscript. VP contributed to project coordination and assisted with editing and reviewing the manuscript and provided the final approval of the version to be published. CEP participated in all stages of manuscript preparation and provided final approval of the version to be published. DS participated in the construction of the consensus statements, survey and manuscript preparation and provided the final approval of the version to be published. YX was a survey participant and reviewed the manuscript and provided approval of the final version to be published. TDH contributed to overall concept and design, assisted with manuscript drafting and revision and provided the final approval of the version to be published. EC contributed to overall concept and design, assisted with manuscript drafting and revision and provided the final approval of the version to be published. KL was an expert panel member and survey participant and edited and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Giovanni Coticchio.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

VP, BB and YX have nothing to disclose.

EC and TDH are employees of Merck KGaA, Darmstadt, Germany.

AC has received consultancy fees from Merck KGaA, Darmstadt, Germany, and is a minor shareholder in the CARE Fertility Group, a private company offering fertility treatment.

DM is a consultant to Cook Medical, Irvine Scientific and Cooper Surgical and received personal fees from Sanitanova during the conduct of this study.

GC reports personal fees from Merck KGaA, Darmstadt, Germany, during the conduct of this study, and personal fees from IBSA and Excemed outside of this submitted work.

MM reports speaker fees from Merck KGaA, Darmstadt, Germany, during the conduct of this study, and personal fees from MSD and Ferring outside of this work.

KL reports personal fees from Sanitanova during the conduct of the study.

DS has nothing to disclose in relation to the submitted work.

CP reports personal fees from Sanitanova during the course of the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coticchio, G., Behr, B., Campbell, A. et al. Fertility technologies and how to optimize laboratory performance to support the shortening of time to birth of a healthy singleton: a Delphi consensus. J Assist Reprod Genet 38, 1021–1043 (2021). https://doi.org/10.1007/s10815-021-02077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02077-5

Keywords

Navigation