Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care, 2017. Hum Reprod. 2017;32(9):1786–801. https://doi.org/10.1093/humrep/dex234.
Article
PubMed
PubMed Central
Google Scholar
Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care, 2017. Fertil Steril. 2017;108(3):393–406. https://doi.org/10.1016/j.fertnstert.2017.06.005.
Article
PubMed
Google Scholar
Alpha SIRM, ESHRE SIGE. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod BioMed Online. 2011;22(6):632–46. https://doi.org/10.1016/j.rbmo.2011.02.001.
Article
Google Scholar
Alpha SiRM, ESHRE SIGoE. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83. https://doi.org/10.1093/humrep/der037.
Article
Google Scholar
ASRM. Blastocyst culture and transfer in clinically assisted reproduction: a committee opinion. Fertil Steril. 2018;110(7):1246–52. https://doi.org/10.1016/j.fertnstert.2018.09.011.
Article
Google Scholar
Hammond ER, Cree LM, Morbeck DE. Should extended blastocyst culture include day 7? Hum Reprod. 2018;33(6):991–7. https://doi.org/10.1093/humrep/dey091.
Article
PubMed
Google Scholar
Tiegs AW, Sun L, Patounakis G, Scott RT. Worth the wait? Day 7 blastocysts have lower euploidy rates but similar sustained implantation rates as day 5 and day 6 blastocysts. Hum Reprod. 2019;34(9):1632–9. https://doi.org/10.1093/humrep/dez138.
CAS
Article
PubMed
Google Scholar
Alikani M, Munne S. Nonviable human pre-implantation embryos as a source of stem cells for research and potential therapy. Stem Cell Rev. 2005;1(4):337–43. https://doi.org/10.1385/SCR:1:4:337.
Article
PubMed
Google Scholar
Gavrilov S, Prosser RW, Khalid I, MacDonald J, Sauer MV, Landry DW, et al. Non-viable human embryos as a source of viable cells for embryonic stem cell derivation. Reprod BioMed Online. 2009;18(2):301–8. https://doi.org/10.1016/s1472-6483(10)60270-2.
Article
PubMed
Google Scholar
Morbeck DE. Blastocyst culture in the era of PGS and FreezeAlls: is a ‘C’ a failing grade? Hum Reprod Open. 2017;2017(3):hox017. https://doi.org/10.1093/hropen/hox017.
Article
PubMed
PubMed Central
Google Scholar
Cimadomo D, Soscia D, Vaiarelli A, Maggiulli R, Capalbo A, Ubaldi FM, et al. Looking past the appearance: a comprehensive description of the clinical contribution of poor-quality blastocysts to increase live birth rates during cycles with aneuploidy testing. Hum Reprod. 2019;34(7):1206–14. https://doi.org/10.1093/humrep/dez078.
Article
PubMed
Google Scholar
Hammond ER, Foong AKM, Rosli N, Morbeck DE. Should we freeze it? Agreement on fate of borderline blastocysts is poor and does not improve with a modified blastocyst grading system. Hum Reprod. 2020;35:1045–53. https://doi.org/10.1093/humrep/deaa060.
Article
PubMed
Google Scholar
Gardner DK, Schoolcraft B. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Toward reproductive certainty: fertility and genetics beyond. London: Parthenon Publishing; 1999. p. 378–88.
Google Scholar
Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod BioMed Online. 2017;34(2):137–46. https://doi.org/10.1016/j.rbmo.2016.11.008.
CAS
Article
PubMed
Google Scholar
Coticchio G, Lagalla C, Sturmey R, Pennetta F, Borini A. The enigmatic morula: mechanisms of development, cell fate determination, self-correction and implications for ART. Hum Reprod Update. 2019;25(4):422–38. https://doi.org/10.1093/humupd/dmz008.
CAS
Article
PubMed
Google Scholar
McCollin A, Swann RL, Summers MC, Handyside AH, Ottolini CS. Abnormal cleavage and developmental arrest of human preimplantation embryos in vitro. Eur J Med Genet. 2020;63(2):103651. https://doi.org/10.1016/j.ejmg.2019.04.008.
Article
PubMed
Google Scholar
Ottolini CS, Kitchen J, Xanthopoulou L, Gordon T, Summers MC, Handyside AH. Tripolar mitosis and partitioning of the genome arrests human preimplantation development in vitro. Sci Rep. 2017;7(1):9744. https://doi.org/10.1038/s41598-017-09693-1.
Article
PubMed
PubMed Central
Google Scholar
Zaninovic N, Zhan Q, Norberg C, Ye Z, Clarke R, Rosenwaks Z. Blastomere extrusion and abnormal cleavage behavior in human embryos under time-lapse monitoring: possible way of embryo “self-correction”? Fertil Steril. 2016;106(3, SUPPLEMENT):E353. https://doi.org/10.1016/j.fertnstert.2016.07.1003.
Article
Google Scholar
Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29(6):1173–81. https://doi.org/10.1093/humrep/deu033.
Article
PubMed
Google Scholar
Baumann CG, Morris DG, Sreenan JM, Leese HJ. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev. 2007;74(10):1345–53. https://doi.org/10.1002/mrd.20604.
CAS
Article
PubMed
Google Scholar
Leese HJ, Sturmey RG, Baumann CG, McEvoy TG. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007;22(12):3047–50. https://doi.org/10.1093/humrep/dem253.
Article
PubMed
Google Scholar
Betts DH, Madan P. Permanent embryo arrest: molecular and cellular concepts. Mol Hum Reprod. 2008;14(8):445–53. https://doi.org/10.1093/molehr/gan035.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hardy K, Spanos S, Becker D, Iannelli P, Winston RM, Stark J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci U S A. 2001;98(4):1655–60. https://doi.org/10.1073/pnas.98.4.1655.
CAS
Article
PubMed
PubMed Central
Google Scholar
Heffner LJ. Advanced maternal age--how old is too old? N Engl J Med. 2004;351(19):1927–9. https://doi.org/10.1056/NEJMp048087.
CAS
Article
PubMed
Google Scholar
Alfarawati S, Fragouli E, Colls P, Stevens J, Gutierrez-Mateo C, Schoolcraft WB, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95(2):520–4. https://doi.org/10.1016/j.fertnstert.2010.04.003.
Article
PubMed
Google Scholar
Bruno C, Dudkiewicz-Sibony C, Berthaut I, Weil E, Brunet L, Fortier C, et al. Survey of 243 ART patients having made a final disposition decision about their surplus cryopreserved embryos: the crucial role of symbolic embryo representation. Hum Reprod. 2016;31(7):1508–14. https://doi.org/10.1093/humrep/dew104.
CAS
Article
PubMed
Google Scholar
Faustini F, Forte M, Capalbo A, Cimadomo D, Ubaldi FM, Rienzi L. The main will of the patients of a private Italian IVF clinic for their aneuploid/affected blastocysts would be donation to research: a currently forbidden choice. J Assist Reprod Genet. 2019;36(8):1555–60. https://doi.org/10.1007/s10815-019-01465-2.
Article
PubMed
PubMed Central
Google Scholar
Capalbo A, Hoffmann ER, Cimadomo D, Ubaldi FM, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23(6):706–22. https://doi.org/10.1093/humupd/dmx026.
CAS
Article
PubMed
Google Scholar
Bebbere D, Masala L, Albertini DF, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet. 2016;33(11):1431–8. https://doi.org/10.1007/s10815-016-0788-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Leese HJ, Guerif F, Allgar V, Brison DR, Lundin K, Sturmey RG. Biological optimization, the goldilocks principle, and how much is lagom in the preimplantation embryo. Mol Reprod Dev. 2016;83(9):748–54. https://doi.org/10.1002/mrd.22684.
CAS
Article
PubMed
Google Scholar
McCoy RC, Newnham LJ, Ottolini CS, Hoffmann ER, Chatzimeletiou K, Cornejo OE, et al. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos. Hum Mol Genet. 2018;27(14):2573–85. https://doi.org/10.1093/hmg/ddy147.
CAS
Article
PubMed
PubMed Central
Google Scholar
Apter S, Ebner T, Freour T, Guns Y, Kovacic B, Le Clef N, et al. Eshre Working group on Time-lapse technology: Good practice recommendations for the use of time-lapse technology. Hum Reprod Open. 2020;2020(2):hoaa008. https://doi.org/10.1093/hropen/hoaa008.
Article
PubMed
PubMed Central
Google Scholar
Pennetta F, Lagalla C, Borini A. Embryo morphokinetic characteristics and euploidy. Curr Opin Obstet Gynecol. 2018;30(3):185–96. https://doi.org/10.1097/GCO.0000000000000453.
Article
PubMed
Google Scholar
Zhan Q, Ye Z, Clarke R, Rosenwaks Z, Zaninovic N. Direct unequal cleavages: embryo developmental competence, genetic constitution and clinical outcome. PLoS One. 2016;11(12):e0166398. https://doi.org/10.1371/journal.pone.0166398.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cimadomo D, Rienzi L, Capalbo A, Rubio C, Innocenti F, Garcia-Pascual CM, et al. The dawn of the future: 30 years from the first biopsy of a human embryo. The detailed history of an ongoing revolution. Hum Reprod Update. 2020;26:453–73. https://doi.org/10.1093/humupd/dmaa019.
CAS
Article
PubMed
Google Scholar
Kokkali G, Coticchio G, Bronet F, Celebi C, Cimadomo D, Goossens V, et al. ESHRE PGT consortium and SIG embryology good practice recommendations for polar body and embryo biopsy for PGT. Hum Reprod Open. 2020;2020(3):hoaa020. https://doi.org/10.1093/hropen/hoaa020.
Article
PubMed
PubMed Central
Google Scholar
Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30. https://doi.org/10.1016/j.fertnstert.2013.04.039.
Article
PubMed
Google Scholar
Capmany G, Taylor A, Braude PR, Bolton VN. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo. Mol Hum Reprod. 1996;2(5):299–306. https://doi.org/10.1093/molehr/2.5.299.
CAS
Article
PubMed
Google Scholar
Nagy ZP, Liu J, Joris H, Devroey P, Van Steirteghem A. Time-course of oocyte activation, pronucleus formation and cleavage in human oocytes fertilized by intracytoplasmic sperm injection. Hum Reprod. 1994;9(9):1743–8. https://doi.org/10.1093/oxfordjournals.humrep.a138786.
CAS
Article
PubMed
Google Scholar
Payne D, Flaherty SP, Barry MF, Matthews CD. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod. 1997;12(3):532–41. https://doi.org/10.1093/humrep/12.3.532.
CAS
Article
PubMed
Google Scholar
Coticchio G, Mignini Renzini M, Novara PV, Lain M, De Ponti E, Turchi D, et al. Focused time-lapse analysis reveals novel aspects of human fertilization and suggests new parameters of embryo viability. Hum Reprod. 2018;33(1):23–31. https://doi.org/10.1093/humrep/dex344.
CAS
Article
PubMed
Google Scholar
Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71. https://doi.org/10.1093/humrep/der256.
Article
PubMed
Google Scholar
Scott LA, Smith S. The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum Reprod. 1998;13(4):1003–13.
CAS
Article
Google Scholar
Tesarik J, Greco E. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum Reprod. 1999;14(5):1318–23. https://doi.org/10.1093/humrep/14.5.1318.
CAS
Article
PubMed
Google Scholar
Scott L, Alvero R, Leondires M, Miller B. The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod. 2000;15(11):2394–403. https://doi.org/10.1093/humrep/15.11.2394.
CAS
Article
PubMed
Google Scholar
Machtinger R, Racowsky C. Morphological systems of human embryo assessment and clinical evidence. Reprod BioMed Online. 2013;26(3):210–21. https://doi.org/10.1016/j.rbmo.2012.10.021.
Article
PubMed
Google Scholar
Balaban B, Urman B, Isiklar A, Alatas C, Aksoy S, Mercan R, et al. The effect of pronuclear morphology on embryo quality parameters and blastocyst transfer outcome. Hum Reprod. 2001;16(11):2357–61. https://doi.org/10.1093/humrep/16.11.2357.
CAS
Article
PubMed
Google Scholar
Rienzi L, Ubaldi F, Iacobelli M, Ferrero S, Minasi MG, Martinez F, et al. Day 3 embryo transfer with combined evaluation at the pronuclear and cleavage stages compares favourably with day 5 blastocyst transfer. Hum Reprod. 2002;17(7):1852–5. https://doi.org/10.1093/humrep/17.7.1852.
Article
PubMed
Google Scholar
Zollner U, Zollner KP, Hartl G, Dietl J, Steck T. The use of a detailed zygote score after IVF/ICSI to obtain good quality blastocysts: the German experience. Hum Reprod. 2002;17(5):1327–33. https://doi.org/10.1093/humrep/17.5.1327.
CAS
Article
PubMed
Google Scholar
Nagy ZP, Dozortsev D, Diamond M, Rienzi L, Ubaldi F, Abdelmassih R, et al. Pronuclear morphology evaluation with subsequent evaluation of embryo morphology significantly increases implantation rates. Fertil Steril. 2003;80(1):67–74. https://doi.org/10.1016/s0015-0282(03)00569-7.
Article
PubMed
Google Scholar
Wittemer C, Bettahar-Lebugle K, Ohl J, Rongieres C, Nisand I, Gerlinger P. Zygote evaluation: an efficient tool for embryo selection. Hum Reprod. 2000;15(12):2591–7. https://doi.org/10.1093/humrep/15.12.2591.
CAS
Article
PubMed
Google Scholar
Montag M, van der Ven H, German pronuclear morphology study G. Evaluation of pronuclear morphology as the only selection criterion for further embryo culture and transfer: results of a prospective multicentre study. Hum Reprod. 2001;16(11):2384–9. https://doi.org/10.1093/humrep/16.11.2384.
CAS
Article
PubMed
Google Scholar
De los Santos MJ, Apter S, Coticchio G, Debrock S, Lundin K, Plancha CE, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31(4):685–6. https://doi.org/10.1093/humrep/dew016.
Article
PubMed
Google Scholar
Liu J, Wang XL, Zhang X, Shen CY, Zhang Z. Live births resulting from 0PN-derived embryos in conventional IVF cycles. J Assist Reprod Genet. 2016;33(3):373–8. https://doi.org/10.1007/s10815-015-0644-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Destouni A, Dimitriadou E, Masset H, Debrock S, Melotte C, Van Den Bogaert K, et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M. Hum Reprod. 2018;33(12):2302–11. https://doi.org/10.1093/humrep/dey325.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hondo S, Arichi A, Muramatsu H, Omura N, Ito K, Komine H, et al. Clinical outcomes of transfer of frozen and thawed single blastocysts derived from nonpronuclear and monopronuclear zygotes. Reprod Med Biol. 2019;18(3):278–83. https://doi.org/10.1002/rmb2.12275.
CAS
Article
PubMed
PubMed Central
Google Scholar
Basile N, Morbeck D, Garcia-Velasco J, Bronet F, Meseguer M. Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod. 2013;28(3):634–41. https://doi.org/10.1093/humrep/des462.
CAS
Article
PubMed
Google Scholar
Staessen C, Van Steirteghem AC. The chromosomal constitution of embryos developing from abnormally fertilized oocytes after intracytoplasmic sperm injection and conventional in-vitro fertilization. Hum Reprod. 1997;12(2):321–7.
CAS
Article
Google Scholar
Kang HJ, Rosenwaks Z. Triploidy--the breakdown of monogamy between sperm and egg. Int J Dev Biol. 2008;52(5–6):449–54. https://doi.org/10.1387/ijdb.082602hk.
Article
PubMed
Google Scholar
Mateo S, Vidal F, Parriego M, Rodriguez I, Montalvo V, Veiga A, et al. Could monopronucleated ICSI zygotes be considered for transfer? Analysis through time-lapse monitoring and PGS. J Assist Reprod Genet. 2017;34(7):905–11. https://doi.org/10.1007/s10815-017-0937-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bradley CK, Traversa MV, Hobson N, Gee AJ, McArthur SJ. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance. Reprod BioMed Online. 2017;34(6):567–74. https://doi.org/10.1016/j.rbmo.2017.03.013.
Article
PubMed
Google Scholar
Capalbo A, Treff N, Cimadomo D, Tao X, Ferrero S, Vaiarelli A, et al. Abnormally fertilized oocytes can result in healthy live births: improved genetic technologies for preimplantation genetic testing can be used to rescue viable embryos in in vitro fertilization cycles. Fertil Steril. 2017;108:1007–1015.e3. https://doi.org/10.1016/j.fertnstert.2017.08.004.
Article
PubMed
Google Scholar
Staessen C, Janssenswillen C, Devroey P, Van Steirteghem AC. Cytogenetic and morphological observations of single pronucleated human oocytes after in-vitro fertilization. Hum Reprod. 1993;8(2):221–3. https://doi.org/10.1093/oxfordjournals.humrep.a138026.
CAS
Article
PubMed
Google Scholar
Munne S, Tang YX, Grifo J, Cohen J. Origin of single pronucleated human zygotes. J Assist Reprod Genet. 1993;10(4):276–9. https://doi.org/10.1007/BF01204942.
CAS
Article
PubMed
Google Scholar
Nagy ZP, Janssenswillen C, Janssens R, De Vos A, Staessen C, Van de Velde H, et al. Timing of oocyte activation, pronucleus formation and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular spermatozoa and after ICSI or in-vitro fertilization on sibling oocytes with ejaculated spermatozoa. Hum Reprod. 1998;13(6):1606–12. https://doi.org/10.1093/humrep/13.6.1606.
CAS
Article
PubMed
Google Scholar
Capalbo A, Ottolini CS, Griffin DK, Ubaldi FM, Handyside AH, Rienzi L. Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte. Fertil Steril. 2016;105(3):807–14.e2. https://doi.org/10.1016/j.fertnstert.2015.11.017.
CAS
Article
PubMed
Google Scholar
Jacobs PA, Angell RR, Buchanan IM, Hassold TJ, Matsuyama AM, Manuel B. The origin of human triploids. Ann Hum Genet. 1978;42(1):49–57. https://doi.org/10.1111/j.1469-1809.1978.tb00930.x.
CAS
Article
PubMed
Google Scholar
McFadden DE, Robinson WP. Phenotype of triploid embryos. J Med Genet. 2006;43(7):609–12. https://doi.org/10.1136/jmg.2005.037747.
CAS
Article
PubMed
Google Scholar
Joergensen MW, Labouriau R, Hindkjaer J, Stougaard M, Kolevraa S, Bolund L, et al. The parental origin correlates with the karyotype of human embryos developing from tripronuclear zygotes. Clin Exp Reprod Med. 2015;42(1):14–21. https://doi.org/10.5653/cerm.2015.42.1.14.
Article
PubMed
PubMed Central
Google Scholar
Li M, Xue X, Zhao W, Li W, Shi J. Effects of high three pro-nuclei (3PN) proportion incidence on clinical outcomes in the fresh cleavage-stage and blastocyst-stage embryo transfer (ET) cycles. Gynecol Endocrinol. 2017;33(1):53–6. https://doi.org/10.1080/09513590.2016.1190817.
Article
PubMed
Google Scholar
Yao G, Xu J, Xin Z, Niu W, Shi S, Jin H, et al. Developmental potential of clinically discarded human embryos and associated chromosomal analysis. Sci Rep. 2016;6:23995. https://doi.org/10.1038/srep23995.
CAS
Article
PubMed
PubMed Central
Google Scholar
Grau N, Escrich L, Galiana Y, Meseguer M, Garcia-Herrero S, Remohi J, et al. Morphokinetics as a predictor of self-correction to diploidy in tripronucleated intracytoplasmic sperm injection-derived human embryos. Fertil Steril. 2015;104(3):728–35. https://doi.org/10.1016/j.fertnstert.2015.05.024.
Article
PubMed
Google Scholar
Xu J, Zhang M, Niu W, Yao G, Sun B, Bao X, et al. Genome-wide uniparental disomy screen in human discarded morphologically abnormal embryos. Sci Rep. 2015;5:12302. https://doi.org/10.1038/srep12302.
Article
PubMed
PubMed Central
Google Scholar
Grati FR, Gallazzi G, Branca L, Maggi F, Simoni G, Yaron Y. An evidence-based scoring system for prioritizing mosaic aneuploid embryos following preimplantation genetic screening. Reprod BioMed Online. 2018;36(4):442–9. https://doi.org/10.1016/j.rbmo.2018.01.005.
Article
PubMed
Google Scholar
Gueye NA, Devkota B, Taylor D, Pfundt R, Scott RT Jr, Treff NR. Uniparental disomy in the human blastocyst is exceedingly rare. Fertil Steril. 2014;101(1):232–6. https://doi.org/10.1016/j.fertnstert.2013.08.051.
Article
PubMed
Google Scholar
Gardner RJM, Sutherland GR, Schaffer LG. Chromosome abnormalities and genetic counseling. 4th ed. New York: Oxford University Press; 2012.
Google Scholar
McFadden DE, Kwong LC, Yam IY, Langlois S. Parental origin of triploidy in human fetuses: evidence for genomic imprinting. Hum Genet. 1993;92(5):465–9. https://doi.org/10.1007/BF00216452.
CAS
Article
PubMed
Google Scholar
McFadden DE, Langlois S. Parental and meiotic origin of triploidy in the embryonic and fetal periods. Clin Genet. 2000;58(3):192–200. https://doi.org/10.1034/j.1399-0004.2000.580306.x.
CAS
Article
PubMed
Google Scholar
Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science. 2019;365(6460):1466–9. https://doi.org/10.1126/science.aav7321.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thornhill AR, Handyside AH, Ottolini C, Natesan SA, Taylor J, Sage K, et al. Karyomapping-a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J Assist Reprod Genet. 2015;32(3):347–56. https://doi.org/10.1007/s10815-014-0405-y.
Article
PubMed
PubMed Central
Google Scholar
Girardi L, Serdarogullari M, Patassini C, Poli M, Fabiani M, Caroselli S, et al. Incidence, origin, and predictive model for the detection and clinical management of segmental aneuploidies in human embryos. Am J Hum Genet. 2020;106:525–34. https://doi.org/10.1016/j.ajhg.2020.03.005.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tiegs AW, Tao X, Zhan Y, Whitehead C, Kim J, Hanson B, et al. A multicenter, prospective, blinded, nonselection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing-based preimplantation genetic testing for aneuploidy assay and impact of biopsy. Fertil Steril. 2020. https://doi.org/10.1016/j.fertnstert.2020.07.052.
Popovic M, Dhaenens L, Boel A, Menten B, Heindryckx B. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update. 2020;26:313–34. https://doi.org/10.1093/humupd/dmz050.
CAS
Article
PubMed
Google Scholar
Scott RT Jr, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012;97(4):870–5. https://doi.org/10.1016/j.fertnstert.2012.01.104.
Article
PubMed
Google Scholar
Popovic M, Dhaenens L, Taelman J, Dheedene A, Bialecka M, De Sutter P, et al. Extended in vitro culture of human embryos demonstrates the complex nature of diagnosing chromosomal mosaicism from a single trophectoderm biopsy. Hum Reprod. 2019;34(4):758–69. https://doi.org/10.1093/humrep/dez012.
CAS
Article
PubMed
Google Scholar
Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91. https://doi.org/10.1038/35066065.
CAS
Article
PubMed
Google Scholar
Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat Genet. 2015;47(7):727–35. https://doi.org/10.1038/ng.3306.
CAS
Article
PubMed
PubMed Central
Google Scholar
Goodrich D, Tao X, Bohrer C, Lonczak A, Xing T, Zimmerman R, et al. A randomized and blinded comparison of qPCR and NGS-based detection of aneuploidy in a cell line mixture model of blastocyst biopsy mosaicism. J Assist Reprod Genet. 2016;33(11):1473–80. https://doi.org/10.1007/s10815-016-0784-3.
Article
PubMed
PubMed Central
Google Scholar
Capalbo A, Rienzi L. Mosaicism between trophectoderm and inner cell mass. Fertil Steril. 2017;107(5):1098–106. https://doi.org/10.1016/j.fertnstert.2017.03.023.
Article
PubMed
Google Scholar
Capalbo A, Ubaldi FM, Rienzi L, Scott R, Treff N. Detecting mosaicism in trophectoderm biopsies: current challenges and future possibilities. Hum Reprod. 2017;32(3):492–8. https://doi.org/10.1093/humrep/dew250.
CAS
Article
PubMed
Google Scholar
Forman EJ. Demystifying “mosaic” outcomes. Fertil Steril. 2019;111(2):253. https://doi.org/10.1016/j.fertnstert.2018.12.012.
Article
PubMed
Google Scholar
Paulson RJ, Treff N. Isn’t it time to stop calling preimplantation embryos “mosaic”? F&S Reports. 2020. https://doi.org/10.1016/j.xfre.2020.10.009.
Besser AG, Blakemore JK, Grifo JA, Mounts EL. Transfer of embryos with positive results following preimplantation genetic testing for monogenic disorders (PGT-M): experience of two high-volume fertility clinics. J Assist Reprod Genet. 2019;36(9):1949–55. https://doi.org/10.1007/s10815-019-01538-2.
Article
PubMed
PubMed Central
Google Scholar