Skip to main content

Advertisement

Log in

Melatonin levels and microRNA (miRNA) relative expression profile in the follicular ambient microenvironment in patients undergoing in vitro fertilization process

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Intrafollicular fluid (IFF) melatonin plays a decisive role in maintaining granulosa cells’ DNA integrity and protects them against apoptosis. It reduces oxidative stress and improves the oocyte quality with a higher fertilization rate.

Method

This prospective study investigated the antioxidant property of IFF melatonin and its impact on IVF outcome parameters. We also explored the relative expression of five microRNAs (miR-663b, miR-320a, miR-766-3p, miR-132-3p, miR-16-5p) and levels of cell-free DNA (cfDNA) by real-time PCR in unexplained infertile patients. We collected 425 follicular fluid (FF) samples containing mature oocytes from 295 patients undergoing IVF.

Results

Patients were subgrouped based on IFF melatonin concentration (group A ≤ 30 pg/mL, group B > 70 to ≤ 110 pg/mL, group C > 111 to ≤ 385 pg/mL). Our results showed that patients with ≤ 30 pg/mL IFF melatonin levels have significantly higher oxidative stress markers, cfDNA levels, and lower relative expression of miR-663b, miR-320a, miR-766-3p, miR-132-3p, and miR-16-5p compared to other subgroups (p < 0.001). Similarly, they have a low fertilization rate and a reduced number of high-quality day 3 embryos.

Conclusion

Findings suggest that the therapeutic use of melatonin produces a considerable rise in the number of mature oocytes retrieved, fertilization rate, and good-quality embryo selection. Furthermore, miRNA signature enhances the quality of embryo selection, thus, may allow us to classify them as non-invasive biomarkers to identify good-quality embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data set used and analyzed during the current study is available from the corresponding author on reasonable request.

Abbreviations

IVF:

in vitro fertilization

IFF:

intrafollicular fluid

AFC:

antral follicle count

AMH:

anti-Müllerian hormone

PCOS:

polycystic ovarian syndrome

cfDNA:

cell-free DNA

FF:

follicular fluid

PGD:

preimplantation genetic diagnosis

hESCs:

human endometrial stromal cells

TAC:

total antioxidant capacity

ROS:

reactive oxygen species

SOD:

superoxide dismutase

GSH:

glutathione

miRNA:

microRNA

ROC:

receiving operating characteristics

E2 :

17β-estradiol

BMI:

body mass index

FSH:

follicular stimulating hormone

LH:

luteinizing hormone

TSH:

thyroid-stimulating hormone

TVS:

transvaginal ultrasonography

COS:

controlled ovarian stimulation

ICSI:

intracytoplasmic sperm injection

TBARS:

thiobarbituric acid reactive substances

8-OHdG:

8-hydroxy-2′-deoxyguanosine

CI:

confidence interval

References

  1. Turchi P. Prevalence, definition, and classification of infertility. In: Clinical management of male infertility, no. 1. Cham: Springer; 2015. pp. 5–11.

  2. Gelbaya TA, Potdar N, Jeve YB, Nardo LG. Definition and epidemiology of unexplained infertility. Obstet Gynecol Surv. 2014;69(2):109–15.

    PubMed  Google Scholar 

  3. Jana SK, Babu N, Chattopadhyay R, Chakravarty B, Chaudhury K. Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable. Reprod Toxicol. 2010;29(4):447–51.

    CAS  PubMed  Google Scholar 

  4. Oyawoye OA, Abdel-Gadir A, Garner A, Leonard AJ, Perrett C, Hardiman P. The interaction between follicular fluid total antioxidant capacity, infertility and early reproductive outcomes during in vitro fertilization. Redox Rep. 2009;14(5):205–13.

    CAS  PubMed  Google Scholar 

  5. Espino J, Macedo M, Lozano G, Ortiz Á, Rodríguez C, Rodríguez AB, et al. Impact of melatonin supplementation in women with unexplained infertility undergoing fertility treatment. Antioxidants. 2019;8(9):338.

    CAS  PubMed Central  Google Scholar 

  6. Becatti M, Fucci R, Mannucci A, Barygina V, Mugnaini M, Criscuoli L, et al. A biochemical approach to detect oxidative stress in infertile women undergoing assisted reproductive technology procedures. Int J Mol Sci. 2018;19(2):592.

    PubMed Central  Google Scholar 

  7. Cadet J, Davies KJ. Oxidative DNA damage & repair: an introduction. Free Radic Biol Med. 2017;107:2–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12(2):136–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep. 2018;8(1):1–10.

    Google Scholar 

  10. Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet. 2017;34(4):525–33.

    PubMed  PubMed Central  Google Scholar 

  11. Scalici E, Traver S, Mullet T, Molinari N, Ferrieres A, Brunet C, et al. Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci Rep. 2016;6(1):1–10.

    Google Scholar 

  12. Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102(6):1751–61 e1751.

    CAS  PubMed  Google Scholar 

  13. Montazerian M, Yasari F, Aghaalikhani N. Ovarian extracellular microRNAs as the potential non-invasive biomarkers: an update. Biomed Pharmacother. 2018;106:1633–40.

    CAS  PubMed  Google Scholar 

  14. Qasemi M, Amidi F. Extracellular microRNA profiling in human follicular fluid: new biomarkers in female reproductive potential. J Assist Reprod Genet. 2020;37:1769–80.

    PubMed  Google Scholar 

  15. Liang J, Wang S, Wang Z. Role of microRNAs in embryo implantation. Reprod Biol Endocrinol. 2017;15(1):90.

    PubMed  PubMed Central  Google Scholar 

  16. Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Farcomeni A, et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril. 2016;105(1):225–35 e223.

    CAS  PubMed  Google Scholar 

  17. Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, et al. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep. 2015;5:8689.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Abu-Halima M, Khaizaran ZA, Ayesh BM, Fischer U, Khaizaran SA, Al-Battah F, et al. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil Steril. 2020;133(5):970-980.e2.

    Google Scholar 

  19. Kropp J, Khatib H. Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci. 2015;98(9):6552–63.

    CAS  PubMed  Google Scholar 

  20. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068–79.

    CAS  PubMed  Google Scholar 

  21. Srinivasan V, Singh J, Pandi-Perumal SR, Brown GM, Spence DW, Cardinali DP. Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs. Adv Ther. 2010;27(11):796–813.

    CAS  PubMed  Google Scholar 

  22. Cajochen C, Kräuchi K, Wirz-Justice A. Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol. 2003;15(4):432–7.

    CAS  PubMed  Google Scholar 

  23. Hadi A, Ghaedi E, Moradi S, Pourmasoumi M, Ghavami A, Kafeshani M. Effects of melatonin supplementation on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res. 2019;51(03):157–64.

    CAS  PubMed  Google Scholar 

  24. Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, et al. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev. 2017;9(2):139–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaspar do Amaral F, Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Arch Endocrinol Metab. 2018;62(4):472–9.

    Google Scholar 

  26. Sanchez-Hidalgo M, Alarcon de la Lastra C, Carrascosa-Salmoral MP, Naranjo MC, Gomez-Corvera A, Caballero B, et al. Age-related changes in melatonin synthesis in rat extrapineal tissues. Exp Gerontol. 2009;44(5):328–34.

  27. Bodis J, Hartmann G, Tinneberg H-R, Török A, Hanf V, Papenfuss F, et al. Relationship between the monoamine, progesterone and estradiol content in follicular fluid of preovulatory graafian follicles after superovulation treatment. Gynecol Obstet Investig. 1993;35(4):232–5.

    CAS  Google Scholar 

  28. Itoh MT, Ishizuka B, Kuribayashi Y, Amemiya A, Sumi Y. Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol Hum Reprod. 1999;5(5):402–8.

    CAS  PubMed  Google Scholar 

  29. Tamura H, Tanabe M, Jozaki M, Taketani T, Sugino N. Antioxidative action of melatonin and reproduction. Glycative Stress Research. 2019;6(3):192–7.

    Google Scholar 

  30. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42(1):28–42.

    CAS  PubMed  Google Scholar 

  31. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1–9.

    CAS  PubMed  Google Scholar 

  32. Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan D-X, Sugino N, et al. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2009;92(1):328–43.

    CAS  PubMed  Google Scholar 

  33. Khan HL, Bhatti S, Khan YL, Abbas S, Munir Z, Sherwani IARK, et al. Cell-free nucleic acids and melatonin levels in human follicular fluid predict embryo quality in patients undergoing in-vitro fertilization treatment. J Gynecol Obstet Hum Reprod. 2020;49(1):101624.

    Google Scholar 

  34. Tanabe M, Tamura H, Taketani T, Okada M, Lee L, Tamura I, et al. Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice. J Reprod Dev. 2015;61:35–41.

    CAS  PubMed  Google Scholar 

  35. Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J. 2013;60:1–13.

    CAS  PubMed  Google Scholar 

  36. Nakamura Y, Tamura H, Takayama H, Kato H. Increased endogenous level of melatonin in preovulatory human follicles does not directly influence progesterone production. Fertil Steril. 2003;80(4):1012–6.

    PubMed  Google Scholar 

  37. Ishizuka B, Kuribayashi Y, Murai K, Amemiya A, Itoh MT. The effect of melatonin on in vitro fertilization and embryo development in mice. J Pineal Res. 2000;28(1):48–51.

    CAS  PubMed  Google Scholar 

  38. Rodriguez-Osorio N, Kim I, Wang H, Kaya A, Memili E. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J Pineal Res. 2007;43(3):283–8.

    CAS  PubMed  Google Scholar 

  39. Asgari Z, Ghasemian F, Ramezani M, Bahadori MH. The effect of melatonin on the developmental potential and implantation rate of mouse embryos. Cell J. 2012;14(3):203.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim MK, Park EA, Kim HJ, Choi WY, Cho JH, Lee WS, et al. Does supplementation of in-vitro culture medium with melatonin improve IVF outcome in PCOS? Reprod BioMed Online. 2013;26(1):22–9.

    CAS  PubMed  Google Scholar 

  41. Matsunaga R, Watanabe S, Mita W, Miura M, Kobayashi Y, Yamanaka N, et al. Effect of melatonin on developmental competence of denuded human oocytes during in vitro maturation. Fertil Steril. 2017;108(3):e145–6.

    Google Scholar 

  42. Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44(3):280–7.

    CAS  PubMed  Google Scholar 

  43. Nishihara T, Hashimoto S, Ito K, Nakaoka Y, Matsumoto K, Hosoi Y, et al. Oral melatonin supplementation improves oocyte and embryo quality in women undergoing in vitro fertilization-embryo transfer. Gynecol Endocrinol. 2014;30(5):359–62.

    CAS  PubMed  Google Scholar 

  44. Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci. 2020;21(3):1135.

    CAS  PubMed Central  Google Scholar 

  45. Unfer V, Raffone E, Rizzo P, Buffo S. Effect of a supplementation with myo-inositol plus melatonin on oocyte quality in women who failed to conceive in previous in vitro fertilization cycles for poor oocyte quality: a prospective, longitudinal, cohort study. Gynecol Endocrinol. 2011;27(11):857–61.

    CAS  PubMed  Google Scholar 

  46. Jahnke G, Marr M, Myers C, Wilson R, Travlos G, Price C. Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol Sci. 1999;50(2):271–9.

    CAS  PubMed  Google Scholar 

  47. Khaksar M, Oryan A, Sayyari M, Rezabakhsh A, Rahbarghazi R. Protective effects of melatonin on long-term administration of fluoxetine in rats. Exp Toxicol Pathol. 2017;69(8):564–74.

    CAS  PubMed  Google Scholar 

  48. Sugden D. Psychopharmacological effects of melatonin in mouse and rat. J Pharmacol Exp Ther. 1983;227(3):587–91.

    CAS  PubMed  Google Scholar 

  49. Andersen LPH, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig. 2016;36(3):169–75.

    CAS  PubMed  Google Scholar 

  50. Bejarano I, Monllor F, Marchena AM, Ortiz A, Lozano G, Jiménez MI, et al. Exogenous melatonin supplementation prevents oxidative stress-evoked DNA damage in human spermatozoa. J Pineal Res. 2014;57(3):333–9.

    CAS  PubMed  Google Scholar 

  51. World Health Organization. WHO laboratory manual for the examination and processing of human semen, 5th edn. Geneva: World Health Organization; 2010. pp. 1–286.

    Google Scholar 

  52. Vandekerckhove F, Vansteelandt S, Gerris J, De Sutter P. Follicle measurements using sonography-based automated volume count accurately predict the yield of mature oocytes in in vitro fertilization/intracytoplasmic sperm injection cycles. Gynecol Obstet Investig. 2013;76(2):107–12.

    Google Scholar 

  53. Hernández J, Rodríguez-Fuentes A, Puopolo M, Palumbo A. Follicular volume predicts oocyte maturity: a prospective cohort study using three-dimensional ultrasound and SonoAVC. Reprod Sci. 2016;23(12):1639–43.

    PubMed  Google Scholar 

  54. Lazzaroni-Tealdi E, Barad DH, Albertini DF, Yu Y, Kushnir VA, Russell H, et al. Oocyte scoring enhances embryo-scoring in predicting pregnancy chances with IVF where it counts most. PLoS One. 2015;10(12):e0143632.

    PubMed  PubMed Central  Google Scholar 

  55. Dimopoulou M, Anifandis G, Messini C, Dafopoulos K, Kouris S, Sotiriou S, et al. Follicular fluid oocyte/cumulusfree DNA concentrations as a potential biomolecular marker of embryo quality and IVF outcome. Biomed Res Int. 2014;2014:289306.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Munakata Y, Shirasuna K, Kuwayama T, Iwata H. Cell-free DNA in medium is associated with the maturation ability of in vitro cultured oocytes. J Reprod Dev. 2019;65 (2):171–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Attaran M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, et al. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med. 2000;45(5):314–20.

    CAS  PubMed  Google Scholar 

  58. Rice-Evans CA, Diplock AT, Symons MR. Techniques in free radical research. Lab Techn Biochem Mol Biol. 1991;22:1–278.

    Google Scholar 

  59. Sarhan D, El Mazny A, Taha T, Aziz A, Azmy O, Fakhry D, et al. Estradiol and luteinizing hormone concentrations in the follicular aspirate during ovum pickup as predictors of in vitro fertilization (IVF) outcome. Middle East Fertil Soc J. 2017;22(1):27–32.

    Google Scholar 

  60. Zheng P, Si W, Bavister BD, Yang J, Ding C, Ji W. 17β-estradiol and progesterone improve in-vitro cytoplasmic maturation of oocytes from unstimulated prepubertal and adult rhesus monkeys. Hum Reprod. 2003;18(10):2137–44.

    CAS  PubMed  Google Scholar 

  61. Polak G, Rola R, Gogacz M, Kozioł-Montewka M, Kotarski J. Malonyldialdehyde and total antioxidant status in the peritoneal fluid of infertile women. Ginekol Pol. 1999;70(3):135–40.

    CAS  PubMed  Google Scholar 

  62. Fernando S, Osianlis T, Vollenhoven B, Wallace E, Rombauts L. A pilot double-blind randomised placebo-controlled dose–response trial assessing the effects of melatonin on infertility treatment (MIART): study protocol. BMJ Open. 2014;4(8). https://doi.org/10.1136/bmjopen-2014-005986.

  63. Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18(4):357–65.

    PubMed  Google Scholar 

  64. Antolín I, Rodríguez C, Sáinz RM, Mayo JC, Uría H, Kotler ML, et al. Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J. 1996;10(8):882–90.

    PubMed  Google Scholar 

  65. Mayo J, Sainz R, Antolin I, Herrera F, Martin V, Rodriguez C. Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci. 2002;59(10):1706–13.

    CAS  PubMed  Google Scholar 

  66. Seino T, Saito H, Kaneko T, Takahashi T, Kawachiya S, Kurachi H. Eight-hydroxy-2′-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil Steril. 2002;77(6):1184–90.

    PubMed  Google Scholar 

  67. Xu G, Zhao J, Liu H, Wang J, Lu W. Melatonin inhibits apoptosis and oxidative stress of mouse leydig cells via a SIRT1-dependent mechanism. Molecules. 2019;24(17):3084.

    CAS  PubMed Central  Google Scholar 

  68. Liu R, Fu A, Hoffman AE, Zheng T, Zhu Y. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol. 2013;14(1):1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Berkhout RP, Keijser R, Repping S, Lambalk CB, Afink GB, Mastenbroek S, et al. High-quality human preimplantation embryos stimulate endometrial stromal cell migration via secretion of microRNA hsa-miR-320a. bioRxiv. 2020;21(91):32–6.

  70. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang D, Luo Y, Wang G, Yang Q. Circular RNA expression profiles and bioinformatics analysis in ovarian endometriosis. Mol Genet Genomic Med. 2019;7(7):e00756.

    PubMed  PubMed Central  Google Scholar 

  72. Su S-C, Reiter RJ, Hsiao H-Y, Chung W-H, Yang S-F. Functional interaction between melatonin signaling and noncoding RNAs. Trends Endocrinol Metab. 2018;29(6):435–45.

    CAS  PubMed  Google Scholar 

  73. Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, De Sutter P, et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil. 2014;17(2):90–8.

    CAS  Google Scholar 

  74. Salas-Huetos A, James ER, Aston KI, Jenkins TG, Carrell DT, Yeste M. The expression of miRNAs in human ovaries, oocytes, extracellular vesicles, and early embryos: a systematic review. Cells. 2019;8(12):1564.

    CAS  PubMed Central  Google Scholar 

  75. Liang L-F, Qi S-T, Xian Y-X, Huang L, Sun X-F, Wang W-H. Protective effect of antioxidants on the pre-maturation aging of mouse oocytes. Sci Rep. 2017;7(1):1–10.

    Google Scholar 

  76. Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, et al. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev. 2019;94(2):415–38.

    PubMed  Google Scholar 

  77. Ragusa M, Barbagallo D, Chioccarelli T, Manfrevola F, Cobellis G, Di Pietro C, et al. CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs. RNA Biol. 2019;16(9):1237–48.

    PubMed  PubMed Central  Google Scholar 

  78. Fu J, Qu R-g, Zhang Y-j, Gu R-h, Li X, Sun Y-j, et al. Screening of miRNAs in human follicular fluid reveals an inverse relationship between microRNA-663b expression and blastocyst formation. Reprod BioMed Online. 2018;37(1):25–32.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the research initiative and gratefully thank Professor Dr. Rashid Latif Khan, Professor of Emeritus in Obstetrics and Gynecology, for manuscript editing. The study is conducted under the infertility research center of Hameed Latif Hospital.

Author information

Authors and Affiliations

Authors

Contributions

HLK and YLK: reviewing and editing, software; SB: conceptualization, methodology, software, data curation, project administration, writing—original draft preparation, supervision, writing—reviewing and editing; SA: formal analysis, validation, methodology, investigation, writing—reviewing and editing; CK: writing—reviewing and editing; SQ: data curation, writing—original draft preparation; ZH: reviewing and editing, methodology, software; NZT: writing—reviewing and editing; HHY: software, validation, methodology.

Corresponding author

Correspondence to Shahzad Bhatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The study was approved by our Institutional Ethical Committee (IEC). Informed consent was obtained from all subjects before the research and publishing of the results of the investigation.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 26 kb).

Figure 1S

Relationship between cfDNA levels and melatonin concentration in individual FF samples. (PNG 194 kb).

Figure 2S

Pearson’s correlation between IFF melatonin concentration and different biomarkers of oxidative balance. (A) Total antioxidant capacity (TAC) (B) Reactive oxygen species (ROS) (C) Thiobarbituric acid reactive substances (TBARS) and (D) 8-hydroxy-2′-deoxyguanosine (8-OHdG) concentrations. (PNG 220 kb).

ESM 1

(PNG 190 kb).

ESM 2

(PNG 229 kb).

ESM 3

(PNG 204 kb).

Figure 3S

Predicted pathway analysis heat map for all miRNAs in detail. Red color indicates high expression and lower p values. Yellow color indicates intermediate expression. (PNG 974 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.L., Bhatti, S., Abbas, S. et al. Melatonin levels and microRNA (miRNA) relative expression profile in the follicular ambient microenvironment in patients undergoing in vitro fertilization process. J Assist Reprod Genet 38, 443–459 (2021). https://doi.org/10.1007/s10815-020-02010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-02010-2

Keywords

Navigation