Skip to main content
Log in

Preservation of connexin 43 and transzonal projections in isolated bovine pre-antral follicles before and following vitrification

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

A Correction to this article was published on 17 December 2020

This article has been updated

Abstract

Purpose

Gap junctions and transzonal projections play a crucial role in intercellular communication between different follicular components and are necessary for follicle development. We aimed to demonstrate gap junction protein connexin 43 (Cx43) and transzonal projections (TZPs) in viable, category 1, isolated bovine pre-antral follicles (PAFs) during short-term culture and after vitrification and warming.

Methods

This study involved four experimental groups: fresh control, 2-day culture, 4-day culture, and vitrified secondary PAFs. Isolated PAFs were vitrified using a simple and efficient cryopreservation method by means of mini cell strainers.

Results

Cx43 and TZPs were detected in pre-antral follicles of all stages, as well as in every experimental group. The group fresh follicles showed a higher percentage of follicles that were positive for Cx43 (91.7%) than the follicles that were vitrified (77.4%). All follicles that were cultured for 2 days were Cx43-positive (100%). Follicles cultured for 4 days (65.8%) (P = 0.002) showed the lowest percentage of follicles that were Cx43-positive. The percentages of the presence or (partial) absence of the TZP network were shown to be very heterogeneous between follicles in different treatment groups.

Conclusions

These results suggest the maintenance of communication between the oocyte and the somatic companion cells after vitrification and warming. The varying percentages of the expression of the TZP network within groups suggests that it will be of interest to investigate whether this is truly due to variability in TZP integrity and follicle quality or due to methodological limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Hewitt M, Weiner SL, Simone JV. Childhood cancer survivorship: improving care and quality of life. Washington, D.C.: National Academies Press; 2003.

    Google Scholar 

  2. Robison LL, Hudson MM. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer. 2014;14(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Wallberg KA, Oktay K. Options on fertility preservation in female cancer patients. Cancer Treat Rev. 2012;38(5):354–61.

    Article  PubMed  Google Scholar 

  4. Hyman JH, Tulandi T. Fertility preservation options after gonadotoxic chemotherapy. Clin Med Insights Reprod Health. 2013;7:61–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009;27(16):2677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seli E, Agarwal A. Fertility preservation in females: emerging technologies and clinical applications. first ed. New York: Springer; 2012.

    Book  Google Scholar 

  7. Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360(9):902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Donnez J, Dolmans M-M, Diaz C, Pellicer A. Ovarian cortex transplantation: time to move on from experimental studies to open clinical application. Fertil Steril. 2015;104(5):1097–8.

    Article  PubMed  Google Scholar 

  9. Forman EJ. Ovarian tissue cryopreservation: still experimental? Fertil Steril. 2018;109(3):443–4.

    Article  PubMed  Google Scholar 

  10. Silber S. Ovarian tissue cryopreservation and transplantation: scientific implications. J Assist Reprod Genet. 2016;33(12):1595–603.

    Article  PubMed  PubMed Central  Google Scholar 

  11. von Wolff M, Sänger N, Liebenthron J. Is ovarian tissue cryopreservation and transplantation still experimental? It is a matter of female age and type of cancer. J Clin Oncol. 2018;36(33):JCO1800425.

    Google Scholar 

  12. Jadoul P, Guilmain A, Squifflet J-L, Luyckx M, Votino R, Wyns C, et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 454 cases. Hum Reprod. 2017;32(5):1046–54.

    Article  CAS  PubMed  Google Scholar 

  13. Donnez J, Manavella DD, Dolmans M-M. Techniques for ovarian tissue transplantation and results. Minerva Ginecol. 2018;70(4):424–31.

    PubMed  Google Scholar 

  14. Rosendahl M, Greve T, Andersen CY. The safety of transplanting cryopreserved ovarian tissue in cancer patients: a review of the literature. J Assist Reprod Genet. 2013;30(1):11–24.

    Article  PubMed  Google Scholar 

  15. Dolmans M-M, Masciangelo R. Risk of transplanting malignant cells in cryopreserved ovarian tissue. Minerva Ginecol. 2018;70(4):436–43.

    PubMed  Google Scholar 

  16. Fisch B, Abir R. Female fertility preservation: past, present and future. Reproduction. 2018;156(1):F11–27.

    Article  CAS  PubMed  Google Scholar 

  17. Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, et al. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update. 2010;16(4):395–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Telfer EE, McLaughlin M. In vitro development of ovarian follicles. Semin Reprod Med. 2011;29(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  19. Telfer EE, Zelinski MB. Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril. 2013;99(6):1523–33.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vanacker J, Dolmans MM, Luyckx V, Donnez J, Amorim CA. First transplantation of isolated murine follicles in alginate. Regen Med. 2014;9(5):609–19.

    Article  CAS  PubMed  Google Scholar 

  21. Luyckx V, Dolmans MM, Vanacker J, Legat C, Fortuno Moya C, Donnez J, et al. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril. 2014;101(4):1149–56.

    Article  PubMed  Google Scholar 

  22. Bus A, Langbeen A, Martin B, Leroy J, Bols P. Is the pre-antral ovarian follicle the ‘holy grail’ for female fertility preservation? Anim Reprod Sci. 2019;207:119–30.

    Article  CAS  PubMed  Google Scholar 

  23. Bus A, van Hoeck V, Langbeen A, Leroy J, Bols PEJ. Effects of vitrification on the viability of alginate encapsulated isolated bovine pre-antral follicles. J Assist Reprod Genet. 2018;35(7):1187–99.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55.

    CAS  PubMed  Google Scholar 

  25. Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226(2):167–79.

    Article  CAS  PubMed  Google Scholar 

  26. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.

    Article  CAS  PubMed  Google Scholar 

  27. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.

    Article  CAS  PubMed  Google Scholar 

  28. Donfack NJ, Alves KA, Alves BG, Rocha RMP, Bruno JB, Bertolini M, et al. Stroma cell-derived factor 1 and connexins (37 and 43) are preserved after vitrification and in vitro culture of goat ovarian cortex. Theriogenology. 2018;116:83–8.

    Article  CAS  PubMed  Google Scholar 

  29. Anderson E, Albertini DF. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol. 1976;71(2):680–6.

    Article  CAS  PubMed  Google Scholar 

  30. Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002;123(5):613–20.

    Article  CAS  PubMed  Google Scholar 

  31. Barrett SL, Shea LD, Woodruff TK. Noninvasive index of cryorecovery and growth potential for human follicles in vitro. Biol Reprod. 2010;82(6):1180–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol. 1998;204(2):373–84.

    Article  CAS  PubMed  Google Scholar 

  33. Motta PM, MAKABE S, NAGURO T, CORRER S. Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy. Arch Histol Cytol. 1994;57(4):369–94.

    Article  CAS  PubMed  Google Scholar 

  34. Fair T, Hulshof S, Hyttel P, Greve T, Boland M. Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat Embryol. 1997;195(4):327–36.

    Article  CAS  Google Scholar 

  35. Armstrong D, Baxter G, Hogg C, Woad K. Insulin-like growth factor (IGF) system in the oocyte and somatic cells of bovine preantral follicles. Reproduction. 2002;123(6):789–97.

    Article  CAS  PubMed  Google Scholar 

  36. Eppig JJ. A comparison between oocyte growth in coculture with granulosa cells and oocytes with granulosa cell-oocyte junctional contact maintained in vitro. J Exp Zool. 1979;209(2):345–53.

    Article  CAS  PubMed  Google Scholar 

  37. Brower PT, Schultz RM. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol. 1982;90(1):144–53.

    Article  CAS  PubMed  Google Scholar 

  38. Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53.

    Article  CAS  PubMed  Google Scholar 

  39. Larsen W. Biological implications of gap junction structure, distribution and composition: a review. Tissue Cell. 1983;15(5):645–71.

    Article  CAS  PubMed  Google Scholar 

  40. Grazul-Bilska AT, Reynolds LP, Redmer DA. Gap junctions in the ovaries. Biol Reprod. 1997;57(5):947–57.

    Article  CAS  PubMed  Google Scholar 

  41. Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88(4):399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nuttinck F, Peynot N, Humblot P, Massip A, Dessy F, Flechon JE. Comparative immunohistochemical distribution of connexin 37 and connexin 43 throughout folliculogenesis in the bovine ovary. Mol Reprod Dev. 2000;57(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  43. da Silva AMS, Bruno JB, de Lima LF, de Sá NAR, Lunardi FO, Ferreira ACA, et al. Connexin 37 and 43 gene and protein expression and developmental competence of isolated ovine secondary follicles cultured in vitro after vitrification of ovarian tissue. Theriogenology. 2016;85(8):1457–67.

    Article  Google Scholar 

  44. Albertini DF, Rider V. Patterns of intercellular connectivity in the mammalian cumulus-oocyte complex. Microsc Res Tech. 1994;27(2):125–33.

    Article  CAS  PubMed  Google Scholar 

  45. Vanhoutte L, Cortvrindt R, Nogueira D, Smitz J. Effects of chilling on structural aspects of early preantral mouse follicles. Biol Reprod. 2004;70(4):1041–8.

    Article  CAS  PubMed  Google Scholar 

  46. Langbeen A, Bartholomeus E, Leroy JL, Bols PE. Bovine in vitro reproduction models can contribute to the development of (female) fertility preservation strategies. Theriogenology. 2015;84(4):477–89.

    Article  PubMed  Google Scholar 

  47. Adams G, Pierson R. Bovine model for study of ovarian follicular dynamics in humans. Theriogenology. 1995;43(1):113–20.

    Article  Google Scholar 

  48. Campbell B, Souza C, Gong J, Webb R, Kendall N, Marsters P, et al. Domestic ruminants as models for the elucidation of the mechanisms controlling ovarian follicle development in humans. Reproduction. 2003;61:429–43.

    CAS  PubMed  Google Scholar 

  49. Jorssen EP, Langbeen A, Marei WF, Fransen E, De porte HF, Leroy JL, et al. Morphologic characterization of isolated bovine early preantral follicles during short-term individual in vitro culture. Theriogenology. 2015;84(2):301–11.

    Article  CAS  PubMed  Google Scholar 

  50. Braw-Tal R, Yossefi S. Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J Reprod Fertil. 1997;109(1):165–71.

    Article  CAS  PubMed  Google Scholar 

  51. Langbeen A, Jorssen EP, Granata N, Fransen E, Leroy JL, Bols PE. Effects of neutral red assisted viability assessment on the cryotolerance of isolated bovine preantral follicles. J Assist Reprod Genet. 2014;31(12):1727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ortiz-Escribano N, Szymanska KJ, Bol M, Vandenberghe L, Decrock E, Van Poucke M, et al. Blocking connexin channels improves embryo development of vitrified bovine blastocysts. Biol Reprod. 2017;96(2):288–301.

    Article  PubMed  Google Scholar 

  53. Lierman S, Tilleman K, Cornelissen M, De Vos WH, Weyers S, T’Sjoen G, et al. Follicles of various maturation stages react differently to enzymatic isolation: a comparison of different isolation protocols. Reprod BioMed Online. 2015;30(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  54. Dohoo I, Martin S, Stryhn H. Vet Epidemiol Res. Second ed. Charlottetown: VER inc; 2009.

    Google Scholar 

  55. Tanpradit N, Comizzoli P, Srisuwatanasagul S, Chatdarong K. Positive impact of sucrose supplementation during slow freezing of cat ovarian tissues on cellular viability, follicle morphology, and DNA integrity. Theriogenology. 2015;83(9):1553–61.

    Article  CAS  PubMed  Google Scholar 

  56. Trapphoff T, El Hajj N, Zechner U, Haaf T, Eichenlaub-Ritter U. DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum Reprod. 2010;25(12):3025–42.

    Article  CAS  PubMed  Google Scholar 

  57. Jin B, Mazur P. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Sci Rep. 2015;5:9271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martino A, Songsasen N, Leibo S. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod. 1996;54(5):1059–69.

    Article  CAS  PubMed  Google Scholar 

  59. Steponkus P, Myers S, Lynch D, Gardner L, Bronshteyn V, Leibo S, et al. Cryopreservation of Drosophila melanogaster embryos. Nature. 1990;345(6271):170–2.

    Article  CAS  PubMed  Google Scholar 

  60. Kim E-Y, Kim N-H, Yi B, Yoon S, Park S, Chung K, et al. Developmental capacity of bovine follicular oocytes after ultra-rapid freezing by electron microscope grid I. cryopreservation of bovine immature oocytes. Korean J Fertil Steril. 2001;25(1):71–6.

    Google Scholar 

  61. Park S-P, Kim EY, Kim DI, Park NH, Won YS, Yoon SH, et al. Simple, efficient and successful vitrification of bovine blastocysts using electron microscope grids. Hum Reprod. 1999;14(11):2838–43.

    Article  CAS  PubMed  Google Scholar 

  62. Nakashima A, Ino N, Kusumi M, Ohgi S, Ito M, Horikawa T, et al. Optimization of a novel nylon mesh container for human embryo ultrarapid vitrification. Fertil Steril. 2010;93(7):2405–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Silke Andries and Els Merckx for their excellent technical assistance and the local slaughterhouses for their cooperation in sample collection. The authors thank Dr. Bronwen Martin for reading and editing the article. The Leica SP8 (Hercules grant AUHA.15.12) confocal microscope was funded by the Hercules Foundation of the Flemish Government.

Funding

All (co-)authors state that the funding of this research was provided by the independent Operational Costs of the University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anniek Bus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Prof. Luc Leybaert was not included in the author group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bus, A., Szymanska, K., Pintelon, I. et al. Preservation of connexin 43 and transzonal projections in isolated bovine pre-antral follicles before and following vitrification. J Assist Reprod Genet 38, 479–492 (2021). https://doi.org/10.1007/s10815-020-01993-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01993-2

Keywords

Navigation