Skip to main content

Intrauterine insemination cycles: prediction of success and thresholds for poor prognosis and futile care



We aimed to define intrauterine insemination (IUI) cycle characteristics associated with viable birth, identify thresholds below which IUI treatments are consistent with very poor prognosis and futile care, and develop a nomogram for individualized application.


This retrospective cohort study evaluated couples using fresh partner ejaculate for IUI from January 2005 to September 2017. Variables included female age, semen characteristics, and ovarian stimulation type. Using cycle-level data, we evaluated the association of these characteristics with the probability of viable birth by fitting generalized regression models for a binary outcome with a logit link function, using generalized estimating equation methodology to account for the correlation between cycles involving the same patient.


The cohort consisted of 1117 women with 2912 IUI cycles; viable birth was achieved in 275 (9.4%) cycles. Futile care (viable birth rate < 1%) was identified for women age > 43, regardless of stimulation type or inseminate motility (IM). Very poor prognosis (viable birth rate < 5%) was identified for women using oral medications or Clomid plus gonadotropins who were (1) age < 35 with IM < 49%, (2) age 35–37 with IM < 56%, or (3) age ≥ 38, and (4) women age ≥ 38 using gonadotropins only with IM < 60%. A clinical prediction model and nomogram was developed with an optimism-corrected c-statistic of 0.611.


The present study highlights the impact of multiple clinical factors on IUI success, identifies criteria consistent with very poor prognosis and futile care, and provides a nomogram to individualize counseling regarding the probability of a viable birth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

Data obtained from fertility database maintained in the Division of Reproductive Endocrinology and Infertility at Mayo Clinic.


  1. Diamond MP, Legro RS, Coutifaris C, Alvero R, Robinson RD, Casson P, et al. Letrozole, gonadotropin, or clomiphene for unexplained infertility. N Engl J Med. 2015;373(13):1230–40.

    Article  CAS  Google Scholar 

  2. Thijssen A, Creemers A, Van der Elst W, Creemers E, Vandormael E, Dhont N, et al. Predictive factors influencing pregnancy rates after intrauterine insemination with frozen donor semen: a prospective cohort study. Reprod BioMed Online. 2017;34(6):590–7.

    Article  Google Scholar 

  3. Kamath MS, Bhave P, Aleyamma T, Nair R, Chandy A, Mangalaraj AM, et al. Predictive factors for pregnancy after intrauterine insemination: a prospective study of factors affecting outcome. J Hum Reprod Sci. 2010;3(3):129–34.

    Article  Google Scholar 

  4. Hansen KR, He AL, Styer AK, Wild RA, Butts S, Engmann L, et al. Predictors of pregnancy and live-birth in couples with unexplained infertility after ovarian stimulation-intrauterine insemination. Fertil Steril. 2016;105(6):1575–83.e2.

    Article  Google Scholar 

  5. Osaikhuwuomwan J, Osemwenkha A, Iribhogbe O, Aziken M, Orhue A. The effect of female age on the outcome of intrauterine insemination treatment in a public hospital-assisted reproduction technology unit. Niger J Clin Pract. 2018;21(8):988–92.

    PubMed  CAS  Google Scholar 

  6. Mollaahmadi L, Keramat A, Ghiasi A, Hashemzadeh M. The relationship between semen parameters in processed and unprocessed semen with intrauterine insemination success rates. Journal of the Turkish German Gynecological Association. 2019;20(1):1–7.

    Article  Google Scholar 

  7. Ghaffari F, Sadatmahalleh SJ, Akhoond MR, Eftekhari Yazdi P, Zolfaghari Z. Evaluating the effective factors in pregnancy after intrauterine insemination: a retrospective study. Int J Fertil Steril. 2015;9(3):300–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Huang H, Hansen KR, Factor-Litvak P, Carson SA, Guzick DS, Santoro N, et al. Predictors of pregnancy and live birth after insemination in couples with unexplained or male-factor infertility. Fertil Steril. 2012;97(4):959–67.

    Article  Google Scholar 

  9. Govindarajan M, Mallikarjunan S, Ahmed HSR, Lakshmanan N, Silambuchelvi D, Sujatha M, et al. Retrospective study of factors affecting intrauterine insemination pregnancy outcome: the impact of male habits and working environment. J Human Reprod Sci. 2017;10(2):114–8.

    Article  CAS  Google Scholar 

  10. Luco SM, Agbo C, Behr B, Dahan MH. The evaluation of pre and post processing semen analysis parameters at the time of intrauterine insemination in couples diagnosed with male factor infertility and pregnancy rates based on stimulation agent. A retrospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2014;179:159–62.

    Article  Google Scholar 

  11. Aboutorabi R, Zamani S, Zarrin Y, Mostafavi FS. A survey on main semen parameters in natural pregnancy and intrauterine insemination: are there any significant differences? Am J Mens Health. 2018;12(3):617–23.

    Article  Google Scholar 

  12. Hassan N, Agbo C, Dahan MH. Pregnancy rates unaffected by sperm count in intrauterine insemination: a retrospective cohort study. Minerva Ginecol. 2017;69(1):6–12.

    PubMed  Google Scholar 

  13. Erdem M, Erdem A, Mutlu MF, Ozisik S, Yildiz S, Guler I, et al. The impact of sperm morphology on the outcome of intrauterine insemination cycles with gonadotropins in unexplained and male subfertility. Eur J Obstet Gynecol Reprod Biol. 2016;197:120–4.

    Article  CAS  Google Scholar 

  14. Van Voorhis BJ, Barnett M, Sparks AE, Syrop CH, Rosenthal G, Dawson J. Effect of the total motile sperm count on the efficacy and cost-effectiveness of intrauterine insemination and in vitro fertilization. Fertil Steril. 2001;75(4):661–8.

    Article  Google Scholar 

  15. Viardot-Foucault V, Tai BC, Prasath EB, Lau MS, Chan JK, Loh SF. Younger women with ovulation disorders and unexplained infertility predict a higher success rate in superovulation (SO) intrauterine insemination (IUI). Ann Acad Med Singap. 2014;43(4):225–31.

    PubMed  Google Scholar 

  16. Khalil MR, Rasmussen PE, Erb K, Laursen SB, Rex S, Westergaard LG. Homologous intrauterine insemination. An evaluation of prognostic factors based on a review of 2473 cycles. Acta Obstet Gynecol Scand. 2001;80(1):74–81.

    Article  CAS  Google Scholar 

  17. van Weert JM, Repping S, van der Steeg JW, Steures P, van der Veen F, Mol BW. IUI in male subfertility: are we able to select the proper patients? Reprod BioMed Online. 2005;11(5):624–31.

    Article  Google Scholar 

  18. Miller DC, Hollenbeck BK, Smith GD, Randolph JF, Christman GM, Smith YR, et al. Processed total motile sperm count correlates with pregnancy outcome after intrauterine insemination. Urology. 2002;60(3):497–501.

    Article  Google Scholar 

  19. Nikbakht R, Saharkhiz N. The influence of sperm morphology, total motile sperm count of semen and the number of motile sperm inseminated in sperm samples on the success of intrauterine insemination. Int J Fertil Steril. 2011;5(3):168–73.

    PubMed  PubMed Central  Google Scholar 

  20. Demir B, Dilbaz B, Cinar O, Karadag B, Tasci Y, Kocak M, et al. Factors affecting pregnancy outcome of intrauterine insemination cycles in couples with favourable female characteristics. J Obstet Gynaecol. 2011;31(5):420–3.

    Article  CAS  Google Scholar 

  21. Ok EK, Dogan OE, Okyay RE, Gulekli B. The effect of post-wash total progressive motile sperm count and semen volume on pregnancy outcomes in intrauterine insemination cycles: a retrospective study. J Turk Ger Gynecol Assoc. 2013;14(3):142–5.

    Article  Google Scholar 

  22. Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H. Predictive factors for pregnancy after intrauterine insemination (IUI): an analysis of 1038 cycles and a review of the literature. Fertil Steril. 2010;93(1):79–88.

    Article  Google Scholar 

  23. Badawy A, Elnashar A, Eltotongy M. Effect of sperm morphology and number on success of intrauterine insemination. Fertil Steril. 2009;91(3):777–81.

    Article  Google Scholar 

  24. Wainer R, Albert M, Dorion A, Bailly M, Bergere M, Lombroso R, et al. Influence of the number of motile spermatozoa inseminated and of their morphology on the success of intrauterine insemination. Hum Reprod. 2004;19(9):2060–5.

    Article  Google Scholar 

  25. van Weert JM, Repping S, Van Voorhis BJ, van der Veen F, Bossuyt PM, Mol BW. Performance of the postwash total motile sperm count as a predictor of pregnancy at the time of intrauterine insemination: a meta-analysis. Fertil Steril. 2004;82(3):612–20.

    Article  Google Scholar 

  26. Kohn TP, Kohn JR, Ramasamy R. Effect of sperm morphology on pregnancy success via intrauterine insemination: a systematic review and meta-analysis. J Urol. 2018;199(3):812–22.

    Article  Google Scholar 

  27. Mollaahmadi L, Keramat A, Ghiasi A, Hashemzadeah M. The relationship between semen parameters in processed and unprocessed semen with IUI success rate. J Turk Ger Gynecol Assoc. 2018.

  28. Ombelet W, Dhont N, Thijssen A, Bosmans E, Kruger T. Semen quality and prediction of IUI success in male subfertility: a systematic review. Reprod BioMed Online. 2014;28(3):300–9.

    Article  Google Scholar 

  29. Van Waart J, Kruger TF, Lombard CJ, Ombelet W. Predictive value of normal sperm morphology in intrauterine insemination (IUI): a structured literature review. Hum Reprod Update. 2001;7(5):495–500.

    Article  Google Scholar 

  30. Fertility treatment when the prognosis is very poor or futile: an Ethics Committee opinion. Fertil Steril. 2019;111(4):659–63.

  31. Boomsma CM, Heineman MJ, Cohlen BJ, Farquhar C. Semen preparation techniques for intrauterine insemination. Cochrane Database Syst Rev. 2007;(4):Cd004507.

  32. Liu WJ, Li WT, Zhang RL, Gao JJ, Wang L, Li YM. Factors influencing the clinical pregnancy rate following intrauterine insemination. Zhonghua nan ke xue = Natl J Androl. 2015;21(11):992–6.

    Google Scholar 

  33. Geisler ME, Ledwidge M, Bermingham M, McAuliffe M, McMenamin MB, Waterstone JJ. Intrauterine insemination—no more Mr. N.I.C.E. guy? Eur J Obstet Gynecol Reprod Biol. 2017;210:342–7.

    Article  Google Scholar 

  34. Goldman MB, Thornton KL, Ryley D, Alper MM, Fung JL, Hornstein MD, et al. A randomized clinical trial to determine optimal infertility treatment in older couples: the Forty and Over Treatment Trial (FORT-T). Fertil Steril. 2014;101(6):1574–81.e2.

    Article  Google Scholar 

  35. Gleicher N, Oleske DM, Tur-Kaspa I, Vidali A, Karande V. Reducing the risk of high-order multiple pregnancy after ovarian stimulation with gonadotropins. N Engl J Med. 2000;343(1):2–7.

    Article  CAS  Google Scholar 

  36. Shulman A, Hauser R, Lipitz S, Frenkel Y, Dor J, Bider D, et al. Sperm motility is a major determinant of pregnancy outcome following intrauterine insemination. J Assist Reprod Genet. 1998;15(6):381–5.

    Article  CAS  Google Scholar 

  37. Zhao Y, Vlahos N, Wyncott D, Petrella C, Garcia J, Zacur H, et al. Impact of semen characteristics on the success of intrauterine insemination. J Assist Reprod Genet. 2004;21(5):143–8.

    Article  Google Scholar 

  38. Lemmens L, Kos S, Beijer C, Brinkman JW, van der Horst FA, van den Hoven L, et al. Predictive value of sperm morphology and progressively motile sperm count for pregnancy outcomes in intrauterine insemination. Fertil Steril. 2016;105(6):1462–8.

    Article  Google Scholar 

  39. Butcher MJ, Janoo J, Broce M, Seybold DJ, Gantt P, Randall G. Use of sperm parameters to predict clinical pregnancy with intrauterine insemination. J Reprod Med. 2016;61(5–6):263–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zaraq Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not required in this retrospective cohort study. The study was approved by Mayo Clinic IRB.

Consent to participate

Not applicable in retrospective cohort study.

Consent for publication

Not applicable in retrospective cohort study.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Figure 1

Results for the model used to derive the nomogram for the prediction of a viable birth based on cycle-level data: (a) histogram of the predicted probabilities of a viable and (b) calibration plot assessing the model performance. Observations were grouped into quintiles based on their predicted probabilities. The circles indicate the mean predicted probability for the quintile (x-axis) and the observed proportion with a viable birth in that quintile (y-axis). (PDF 4 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ainsworth, A.J., Barnard, E.P., Baumgarten, S.C. et al. Intrauterine insemination cycles: prediction of success and thresholds for poor prognosis and futile care. J Assist Reprod Genet 37, 2435–2442 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Intrauterine insemination
  • Poor prognosis care
  • Futile care
  • Nomogram