Skip to main content

Advertisement

Log in

Assessing and validating housekeeping genes in normal, cancerous, and polycystic human ovaries

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Housekeeping genes (HKGs), reference or endogenous control genes, are vital to normalize mRNA levels between different samples. Since using inappropriate HKGs can lead to unreliable results, selecting the proper ones is critical for gene expression studies. To this end, normal human ovaries, as well as those from patients diagnosed with ovarian endometrioid adenocarcinoma (OEA), ovarian mucinous adenocarcinoma (OMA), ovarian serous papillary carcinoma (OSPC), and polycystic ovary syndrome (PCOS), were used to identify the most suitable housekeeping genes.

Methods

RNA was isolated from 5 normal human ovaries (52–79 years of age), 9 cancerous ovaries (3 OEA, 3 OMA, 3 OSPC; 49–75 years of age), and 4 PCOS ovaries (18–35 years of age) in women undergoing hysterectomy. cDNA was synthesized using a whole transcriptome kit, and quantitative real-time PCR was performed using TaqMan array 96-well plates containing 32 human endogenous controls in triplicate.

Results

Among 32 HKGs studied, RPS17, RPL37A, PPIA, 18srRNA, B2M, RPLP0, RPLP30, HPRT1, POP4, CDKN1B, and ELF1 were selected as the best reference genes.

Conclusions

This study confirms recent investigations demonstrating that conventional HKGs, such as GAPDH and beta-actin, are not suitable reference genes for specific pathological conditions, emphasizing the importance of determining the best HKGs on a case-by-case basis and according to tissue type. Our results have identified reliable HKGs for studies of normal human ovaries and those affected by OEA, OMA, OSPC, or PCOS, as well as combined studies of control subjects vs. each cancer or PCOS group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, et al. TRANSFAC®: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31(1):374–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Almeida TA, Quispe-Ricalde A, Montes de Oca F, Foronda P, Hernández MM. A high-throughput open-array qPCR gene panel to identify housekeeping genes suitable for myometrium and leiomyoma expression analysis. Gynecol Oncol. 2014;134(1):138–43.

    PubMed  CAS  Google Scholar 

  3. Vandesompele J, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):research0034. 1.

    Google Scholar 

  4. Hendriks-Balk MC, Michel MC, Alewijnse AE. Pitfalls in the normalization of real-time polymerase chain reaction data. Basic Res Cardiol. 2007;102(3):195–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Rocha-Martins M, Njaine B, Silveira MS. Avoiding pitfalls of internal controls: validation of reference genes for analysis by qRT-PCR and Western blot throughout rat retinal development. PLoS One. 2012;7(8):e43028.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Thellin O, Zorzi W, Lakaye B, de Borman B, Coumans B, Hennen G, et al. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999;75(2–3):291–5.

    PubMed  CAS  Google Scholar 

  7. Guénin S, et al. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot. 2009;60(2):487–93.

    PubMed  Google Scholar 

  8. Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR. β-Actin—an unsuitable internal control for RT-PCR. Mol Cell Probes. 2001;15(5):307–11.

    PubMed  CAS  Google Scholar 

  9. Ruan W, Lai M. Actin, a reliable marker of internal control? Clin Chim Acta. 2007;385(1–2):1–5.

    PubMed  CAS  Google Scholar 

  10. Caradec J, et al. ‘Desperate house genes’: the dramatic example of hypoxia. Br J Cancer. 2010;102(6):1037.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Caradec J, Sirab N, Revaud D, Keumeugni C, Loric S. Is GAPDH a relevant housekeeping gene for normalisation in colorectal cancer experiments? Br J Cancer. 2010;103(9):1475–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Mansur NR, Meyer-Siegler K, Wurzer JC, Sirover MA. Cell cycle regulation of the glyceraldehyde3phosphate dehydrogenaseluracil DNA glycosylase gene in normal human cells. Nucleic Acids Res. 1993;21(4):993–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Vilà MR, et al. Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction. Cancer. 2000;89(1):152–64.

    PubMed  Google Scholar 

  14. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–50.

    PubMed  CAS  Google Scholar 

  15. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509–15.

    PubMed  CAS  Google Scholar 

  16. Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst (JNCI). 1998;90(23):1774–86.

    CAS  Google Scholar 

  17. Jiao J, Sagnelli M, Shi B, Fang Y, Shen Z, Tang T, et al. Genetic and epigenetic characteristics in ovarian tissues from polycystic ovary syndrome patients with irregular menstruation resemble those of ovarian cancer. BMC Endocr Disord. 2019;19(1):30.

    PubMed  PubMed Central  Google Scholar 

  18. Dupasquier S, Delmarcelle AS, Marbaix E, Cosyns JP, Courtoy PJ, Pierreux CE. Validation of housekeeping gene and impact on normalized gene expression in clear cell renal cell carcinoma: critical reassessment of YBX3/ZONAB/CSDA expression. BMC Mol Biol. 2014;15(1):9.

    PubMed  PubMed Central  Google Scholar 

  19. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem. 2009;55(4):611–22.

  20. Ayakannu T, Taylor AH, Willets JM, Brown L, Lambert DG, McDonald J, et al. Validation of endogenous control reference genes for normalizing gene expression studies in endometrial carcinoma. Mol Hum Reprod. 2015;21(9):723–35.

    PubMed  CAS  Google Scholar 

  21. Pabinger S, Rödiger S, Kriegner A, Vierlinger K, Weinhäusel A. A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomol Detect Quantif. 2014;1(1):23–33.

    PubMed  PubMed Central  Google Scholar 

  22. Hellemans J, Mortier G, de Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8(2):R19.

    PubMed  PubMed Central  Google Scholar 

  23. Gachon C, Mingam A, Charrier B. Real-time PCR: what relevance to plant studies? J Exp Bot. 2004;55(402):1445–54.

    PubMed  CAS  Google Scholar 

  24. Kozera B, Rapacz M. Reference genes in real-time PCR. J Appl Genet. 2013;54(4):391–406.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Rebouças EL, et al. Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Braz Arch Biol Technol. 2013;56(1):143–54.

    Google Scholar 

  26. Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation. Biotechniques. 2000;29(2):332–7.

    PubMed  CAS  Google Scholar 

  27. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004;313(4):856–62.

    PubMed  Google Scholar 

  28. Sinn BV, Darb-Esfahani S, Wirtz RM, Faggad A, Weichert W, Buckendahl AC, et al. Vascular endothelial growth factor C mRNA expression is a prognostic factor in epithelial ovarian cancer as detected by kinetic RT-PCR in formalin-fixed paraffin-embedded tissue. Virchows Arch. 2009;455(6):461–7.

    PubMed  CAS  Google Scholar 

  29. Li Y-L, Ye F, Hu Y, Lu WG, Xie X. Identification of suitable reference genes for gene expression studies of human serous ovarian cancer by real-time polymerase chain reaction. Anal Biochem. 2009;394(1):110–6.

    PubMed  CAS  Google Scholar 

  30. Nikishin DA, Filatov MA, Kiseleva MV, Bagaeva TS, Konduktorova VV, Khramova YV, et al. Selection of stable expressed reference genes in native and vitrified/thawed human ovarian tissue for analysis by qRT-PCR and Western blot. J Assist Reprod Genet. 2018;35(10):1851–60.

  31. Sharan R, et al. Consensus reference gene (s) for gene expression studies in human cancers: end of the tunnel visible? Cell Oncol. 2015;38(6):419–31.

    CAS  Google Scholar 

  32. Borkowska P, Zielińska A, Paul-Samojedny M, Stojko R, Kowalski J. Evaluation of reference genes for quantitative real-time PCR in Wharton’s jelly-derived mesenchymal stem cells after lentiviral transduction and differentiation. Mol Biol Rep. 2020;47(2):1107–15.

    PubMed  CAS  Google Scholar 

  33. Shen Y, Li Y, Ye F, Wang F, Lu W, Xie X. Identification of suitable reference genes for measurement of gene expression in human cervical tissues. Anal Biochem. 2010;405(2):224–9.

    PubMed  CAS  Google Scholar 

  34. Fu J, Bian L, Zhao L, Dong Z, Gao X, Luan H, et al. Identification of genes for normalization of quantitative real-time PCR data in ovarian tissues. Acta Biochim Biophys Sin. 2010;42(8):568–74.

    PubMed  CAS  Google Scholar 

  35. Ofinran O, Bose U, Hay D, Abdul S, Tufatelli C, Khan R. Selection of suitable reference genes for gene expression studies in normal human ovarian tissues, borderline ovarian tumours and ovarian cancer. Mol Med Rep. 2016;14(6):5725–31.

    PubMed  CAS  Google Scholar 

  36. Kolkova Z, Arakelyan A, Casslén B, Hansson S, Kriegova E. Normalizing to GADPH jeopardises correct quantification of gene expression in ovarian tumours–IPO8 and RPL4 are reliable reference genes. J Ovarian Res. 2013;6(1):60.

    PubMed  PubMed Central  Google Scholar 

  37. Yang L, He J, Huang S, Zhang X, Bian Y, He N, et al. Activation of hedgehog signaling is not a frequent event in ovarian cancers. Mol Cancer. 2009;8(1):112.

    PubMed  PubMed Central  Google Scholar 

  38. Sharungbam GD, Schwager C, Chiblak S, Brons S, Hlatky L, Haberer T, et al. Identification of stable endogenous control genes for transcriptional profiling of photon, proton and carbon-ion irradiated cells. Radiat Oncol. 2012;7(1):70.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Li J, Zhuang Q, Lan X, Zeng G, Jiang X, Huang Z. PES1 differentially regulates the expression of ERα and ERβ in ovarian cancer. IUBMB Life. 2013;65(12):1017–25.

    PubMed  CAS  Google Scholar 

  40. Aithal MG, Rajeswari N. Validation of housekeeping genes for gene expression analysis in glioblastoma using quantitative real-time polymerase chain reaction. Brain Tumor Res Treat. 2015;3(1):24–9.

    PubMed  PubMed Central  Google Scholar 

  41. Nazet U, Schröder A, Grässel S, Muschter D, Proff P, Kirschneck C. Housekeeping gene validation for RT-qPCR studies on synovial fibroblasts derived from healthy and osteoarthritic patients with focus on mechanical loading. PLoS One. 2019;14(12):e0225790.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Biade S, Marinucci M, Schick J, Roberts D, Workman G, Sage EH, et al. Gene expression profiling of human ovarian tumours. Br J Cancer. 2006;95(8):1092–100.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Caracausi M, Piovesan A, Antonaros F, Strippoli P, Vitale L, Pelleri MC. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies. Mol Med Rep. 2017;16(3):2397–410.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mira Hryniuk for reviewing the English language of the manuscript and Dolores Gonzalez and Olivier Van Kerk for their technical assistance. We are also thankful to Professor Etienne Marbaix for his kind collaboration and providing ovarian control and cancerous samples.

Funding

This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) (C. A. Amorim is an FRS-FNRS Research Associate; grant MIS #F4535 16 awarded to C. A. Amorim; grant 5/4/150/5 awarded to M. M. Dolmans; grant ASP-RE314 awarded to P. Asiabi; FNRS-PDR Convention T.0077.14 and EOS grant 30443682).

Author information

Authors and Affiliations

Authors

Contributions

P. A.: study design, experimental procedures, analysis, interpretation of data, and manuscript preparation. J. A.: statistical analysis. C. G. and M. E. C.: PCOS tissue supply. B. B.: manuscript revision. M. C. C.: PCOS tissue supply and manuscript revision. M. M. D.: manuscript preparation and revision. C. A. A.: experimental design, experimental procedures, interpretation of results, and manuscript revision.

Corresponding author

Correspondence to C. A. Amorim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Use of human ovarian tissue was approved by the Institutional Review Board of the Université Catholique de Louvain on November 28, 2016 (IRB reference 2012/23MAR/125, registration number B403201213872).

Four PCOS samples came from the assisted reproduction technology center of the Careggi University Hospital in Florence, Italy (Ethical approval n. 11314_bio).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

Standard deviation for qPCR technical triplicates as a function of the average value of qPCR technical triplicates. A sharp increase in variability was observed for Ct > 35. (PNG 752 kb)

High resolution image (TIF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asiabi, P., Ambroise, J., Giachini, C. et al. Assessing and validating housekeeping genes in normal, cancerous, and polycystic human ovaries. J Assist Reprod Genet 37, 2545–2553 (2020). https://doi.org/10.1007/s10815-020-01901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01901-8

Keywords

Navigation