Skip to main content
Log in

Microgravity effects on frozen human sperm samples

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Microgravity has severe effects on cellular and molecular structures as well as on metabolic interactions. The aim of this study is to investigate the effects of microgravity (μg) exposure on human frozen sperm samples.

Methods

Sibling samples from 15 normozoospermic healthy donors were frozen using glycerol as cryoprotectant and analyzed under microgravity and ground conditions. Microgravity was obtained by parabolic flights using a CAP10B plane. The plane executed 20 parabolic maneuvers with a mean of 8.5 s of microgravity for each parabola.

Results

Frozen sperm samples preserved in cryostraws and stored in a secure and specific nitrogen vapor cryoshipper do not suffer significant alterations after μg exposure. Comparing the study group (μg) and the control group (1 g), similar results were obtained in the main parameters studied: sperm motility (M/ml) 13.72 ± 12.57 vs 13.03 ± 12.13 (− 0.69 95% CI [− 2.9; 1.52]), progressive a + b sperm motility (%) 21.83 ± 11.69 vs 22.54 ± 12.83 (0.03 95% CI [− 0.08; 0.15]), sperm vitality (%) 46.42 ± 10.81 vs 44.62 ± 9.34 (− 0.04 95% CI [− 0.13; 0.05]), morphologically normal spermatozoa (%) 7.03 ± 2.61 vs 8.09 ± 3.61 (0.12 95% CI [0.01; 0.24]), DNA sperm fragmentation by SCD (%) 13.33 ± 5.12 vs 13.88 ± 6.14 (0.03 95% CI [− 0.09; 0.16]), and apoptotic spermatozoa by MACS (%) 15.47 ± 15.04 vs 23.80 ± 23.63 (− 0.20 95% CI [− 0.66; 1.05]).

Conclusion

The lack of differences obtained between frozen samples exposed to μg and those maintained in ground conditions provides the possibility of considering the safe transport of human male gametes to space. Nevertheless, further research is needed to validate the results and to consider the possibility of creating a human sperm bank outside the Earth.

Trial registration number

ClinicalTrials.gov: NCT03760783

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  1. Clément G. Fundamentals of space medicine. 1st ed. Kluwer; 2003. p. 4.

  2. Vaquer S, Cuyàs E, Rabadan A, González A, Fenollosa F, de la Torre R. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model. F1000Research. 2014;3:201.

    Article  Google Scholar 

  3. Pietsch J, Bauer J, Egli M, Infanger M, Wise P, Ulbrich C, et al. The effects of weightlessness on the human organism and mammalian cells. Curr Mol Med. 2011;11:350–64.

    Article  CAS  Google Scholar 

  4. Narici M, de Boer MD. Disuse of musculo-skeletal system in space and on earth. Eur J Appl Physiol. 2011;111:403–20.

    Article  CAS  Google Scholar 

  5. Mandsager KT, Robertson D, Diedrich A. The function of the autonomic nervous system during space flight. Clin Auton Res. 2015;25:141–51.

    Article  Google Scholar 

  6. Macho L, Kvetnansky R, Fickova M, Popova IA, Grigoriev A. Effects of exposure to space flight on endocrine regulations in experimental animals. Endocr Regul. 2001;35:101–14.

    CAS  PubMed  Google Scholar 

  7. Osborne J, Alonsopérez MV, Ferrer D, Goswami N, González DV, Moser M, et al. Effect of mental arithmetic on heart rate responses during parabolic flights: the Barcelona zero-G challenge. Microgravity Sci Technol. 2014;26:11–6.

    Article  Google Scholar 

  8. Jennings R, Baker E. Gynecological and reproductive issues for women in space: a review. Obstet Gynecol Surv. 2000;55:109–16.

    Article  CAS  Google Scholar 

  9. Serova LV, Denisova LA, Lavrova EA, Makeyeva VF, Natochin YV, Pustynnikova AM, Shakhmatova EI. Parameters of the reproductive function of the mammals: Fetal and placental characteristics. In: OG Gazenko editors. Ontogenesis of mammals in microgravity. NASA TM-103978, Washington DC. 1993. pp. 35–6.

  10. Ronca A. Mammalian development in space. In: Marty H-J, editor. Developmental Biology Research in Space. Elsevier Science; 2003. p. 217–51.

  11. Pellegrini M, Di Siena S, Claps G, Di Cesare S, Dolci S, Rossi P, et al. Microgravity promotes differentiation and meiotic entry of postnatal mouse male germ cells. PLoS One. 2010;5(2):e9064. https://doi.org/10.1371/journal.pone.0009064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morabito C, Guarnieri S, Catizone A, Schiraldi C, Ricci G, Mariggio MA. Transient increases in intracellular calcium and reactive oxygen species levels in TCam-2 cells exposed to microgravity. Sci Rep. 2017;7:15648.

    Article  CAS  Google Scholar 

  13. Shinde V, Brungs S, Henry M, Wegener L, Nemade H, Rotshteyn T, et al. Simulated microgravity modulates differentiation processes of embryonic stem cells. Cell Physiol Biochem. 2016;38:1483–99.

    Article  CAS  Google Scholar 

  14. Nowacki D, Klinger F, Mazur G, De Felici M. Effects of culture in simulated microgravity on the development of mouse embryonic testes. Adv Clin Exp Med. 2015;24:769–74.

    Article  Google Scholar 

  15. Tash JS, Johnson DC, Enders GC. Long term (6 wk) hind limb suspension inhibits spermatogenesis in adult male rats. J Appl Physiol. 2002;92:1191–8.

    Article  Google Scholar 

  16. Zhang X, Li L, Bai Y, Shi R, Wei H, Zhang S. Mouse undifferentiated spermatogonial stem cells cultured as aggregates under simulated microgravity. Andrologia. 2014;46:1013–21.

    Article  CAS  Google Scholar 

  17. Engelmann U, Krassnigg F, Schill WB. Sperm motility under conditions of weightlessness. J Androl. 1992;13:433–6.

    CAS  PubMed  Google Scholar 

  18. Tash JS, Bracho GE. Microgravity alters protein phosphorylation changes during initiation of sea urchin sperm motility. FASEB J. 1999;13:S43–54.

    Article  CAS  Google Scholar 

  19. Kamiya H, Sasaki S, Ikeuchi T, Umemoto Y, Tatsura H, Hayashi Y, et al. Effect of simulated microgravity on testosterone and sperm motility in mice. J Androl. 2003;24:885–90.

    Article  CAS  Google Scholar 

  20. Ikeuchi T, Sasaki S, Umemoto Y, Kubota Y, Kubota H, Kaneko T, et al. Human sperm motility in a microgravity environment. Reprod Med Biol. 2005;4:161–7.

    Article  Google Scholar 

  21. Wu C, Guo X, Wang F, Li X, X Cindy T, Li L, et al. Simulated microgravity compromises mouse oocyte maturation by disrupting meiotic spindle organization and inducing cytoplasmic blebbing. PLoS One. 2011;6(7):e22214. https://doi.org/10.1371/journal.pone.0022214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin SC, Gou GH, Hsia CW, Ho CW, Huang KL, Wu YF, et al. Simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rat neural crest stem cells via upregulating CXCR4 expression and RhoA-ROCK1-p38MAPK-p53 signaling. Stem Cells Dev. 2016;25:1172–93.

    Article  CAS  Google Scholar 

  23. Barjaktarović Z, Nordheim A, Lamkemeyer T, Fladere C, Madlung J, Hampp R. Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J Exp Bot. 2007;58:4357–63.

    Article  Google Scholar 

  24. Nishikawa M, Ohgushi H, Tamai N, Osuga K, Uemura M, Yoshikawa H, et al. The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering. Cell Transplant. 2005;14:829–35.

    Article  Google Scholar 

  25. Kufner E, Blum J, Callens N, Eigenbrod C, Koudelka O, Orr A, et al. ESA’s drop tower utilization activities 2000 to 2011. Microgravity Sci Technol. 2011;23:409–25.

    Article  Google Scholar 

  26. Dannenberg K. Swedish space activities - an overview with focus on balloons and rockets. In: Proceedings of the 200th ESA Symposium on European rocket and balloon programmes and related research. ESA Special publications. 2011. pp 33–5.

  27. Pletser V. Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns. Acta Astronaut. 2004;55:829–54.

    Article  Google Scholar 

  28. Callens N, Ventura-Traveset J, De Lophem TL, Lopez de Echazarreta C, Pletser V, Van Loon J. ESA Parabolic flights, drop tower and centrifuge opportunities for university students. Microgravity Sci Technol. 2011;23:181–9.

    Article  Google Scholar 

  29. Pletser V, Winter J, Bret-Dibat T, Friedrich U, Clervoy JF, Gharib T, et al. The first joint European partial-G parabolic flight campaign at Moon and Mars gravity levels for science and exploration. Microgravity Sci Technol. 2012;24:383–95.

    Article  Google Scholar 

  30. Pletser V, Rouquette S, Friedrich U, Clervoy J, Gharib T, Gai F, et al. European parabolic flight campaigns with Airbus zero-g: looking back at the A300 and looking forward to the A310. Adv Space Res. 2015;56:1003–13.

    Article  Google Scholar 

  31. Brigos M, Perez-Poch A, Alpiste F, Torner J. Parabolic flights with single-engine aerobatic aircraft: flight profile and a computer simulator for its optimization. Microgravity Sci Technol. 2014;26:229–39.

    Article  Google Scholar 

  32. Clément G, Allawey H, Demel M, Golemis A, Kindrat A, Melinyshyn A, et al. Long duration spaceflight increases depth ambiguity of reversible perspective figures. PLoS One. 2015;10(7):e0132317. https://doi.org/10.1371/journal.pone.0132317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schuster A, Boccia V, Perez-Poch A, Gonzalez DV. Estimation of relative distance between two objects in microgravity conditions during parabolic flight. Proceedings of the Elgra Symposium and general assembly. Elgra news. 2015;31:120.

  34. Perez-Poch A, Ventura D, Lopez D. Hypogravity research and educational parabolic flight activities conducted in Barcelona: a new hub of innovation in Europe. Microgravity Sci Technol. 2016;28:603–9.

    Article  Google Scholar 

  35. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Switzerland: World Health Organization; 2010. ISBN 978 92 4 154778 9

    Google Scholar 

  36. Polge C. Low-temperature storage of mammalian spermatozoa. Proc R Soc Lond B Biol Sci. 1957;147:498–508.

    Article  CAS  Google Scholar 

  37. Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod BioMed Online. 2006;12:466–72.

    Article  CAS  Google Scholar 

  38. Kamal K, Herranz R, van Loon JJWA, Medina FJ. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Sci Rep. 2018;8:6424.

    Article  Google Scholar 

  39. Grimm D, Egli M, Krüger M, Riwaldt S, Corydon TJ, Kopp S, et al. Tissue engineering under microgravity conditions -use of stem cells and specialized cells. Stem Cells Dev. 2018;27:787–804.

    Article  Google Scholar 

  40. Wakayama T, Yanagimachi R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol. 1998;16:639–41.

    Article  CAS  Google Scholar 

  41. Wakayama S, Kamada Y, Kohda T, Suzuki H, Shimazu T, Tada M, et al. Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months. PNAS. 2017;23:5988–93.

    Article  Google Scholar 

  42. Gianaroli L, Magli MC, Stanghellini I, Crippa A, Crivello AM, Pescatori ES, et al. DNA integrity is maintained after freeze-drying of human spermatozoa. Fertil Steril. 2012;5:1067–73.

    Article  Google Scholar 

  43. Isachenko E, Isachenko V, Katkov II, Dessole S, Nawroth F. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod BioMed Online. 2003;10:191–200.

    Article  Google Scholar 

  44. Isachenko V, Isachenko E, Montag M, Zaeva V, Krivokharchenko I, Nawroth F, et al. Clean technique for cryoprotectant-free vitrification of human spermatozoa. Reprod BioMed Online. 2005;10:350–4.

    Article  Google Scholar 

  45. Li HY, Zhang H, Miao GY, Xie Y, Sun C, Di CX, et al. Simulated microgravity conditions and carbon ion irradiation induce spermatogenic cell apoptosis and sperm damage. Biomed Environ Sci. 2013;26:726–34.

    CAS  PubMed  Google Scholar 

  46. Yatagai F, Ishioka N. Are biological effects of space radiation really altered under the microgravity environment? Life Sci Space Res. 2014;3:76–89.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ignacio Rodriguez for his support in the statistical analysis.

Code availability

Not applicable.

Funding

This work was performed under the auspices of Càtedra d’Investigació en Obstetrícia y Ginecologia of the Department of Obstetrics, Gynaecology and Reproduction, Dexeus Women’s Health and the Universitat Autònoma de Barcelona. The study was supported by a research grant from “Fundación Dexeus Mujer 2019” in the area of Basic Science (Reproductive Medicine).

Author information

Authors and Affiliations

Authors

Contributions

M. Boada and A. Perez-Poch conceived the study; D.V. González conducted the parabolic flights; M. Ballester and S. García-Monclús performed the seminal tests; S. García performed statistical analysis, M. Boada, A. Perez-Poch, M. Ballester, S. García-Monclús, and A.Veiga analyzed the data and wrote the paper. All authors read, reviewed, and approved the final manuscript.

Corresponding author

Correspondence to M. Boada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This work was approved by the Ethics Committee and Review Board of the Center.

Consent to participate

Study participants were informed of the procedure and gave their consent to participate by signing the informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boada, M., Perez-Poch, A., Ballester, M. et al. Microgravity effects on frozen human sperm samples. J Assist Reprod Genet 37, 2249–2257 (2020). https://doi.org/10.1007/s10815-020-01877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01877-5

Keywords

Navigation