Skip to main content

Advertisement

Log in

Looking beyond the ovary for oncofertility care in women: uterine injury as a potential target for fertility-preserving treatments

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Treatment for cancer has the potential to significantly diminish fertility and, further, to negatively impact the obstetrical outcomes of pregnancies that do occur. Cancer survivors have decreased rates of fertility and increased rates of pregnancy complications, such as preterm birth and low birth weight, after exposure to chemotherapy. To date, research on the impact of chemotherapy and radiotherapy on fertility and pregnancy outcomes has focused largely on the gonadotoxic effect of cancer treatments on ovaries, while the uterus and endometrium have not been extensively studied. It is intuitive, however, that decreased fertility and poorer obstetrical outcomes may be substantially mediated through injury to a highly mitotic tissue like the endometrium, which is also central to embryo implantation and utero-placental exchange. Pregnancy complications in cancer survivors might be due to compromised blood supply to the endometrium and myometrium affecting placentation or altered remodeling of the pregnant uterus secondary to radiation fibrosis. Alterations in endometrial receptivity at the molecular level could affect pregnancy implantation and early pregnancy loss, but later complications also can occur. This review focuses on understanding the unintended effects of chemotherapy and radiotherapy on uterine function in female cancer survivors and the impact on pregnancy, and summarizes mechanisms to protect and treat the uterus before and after cancer chemotherapy and radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Cancer Society. Facts & Figures 2018. American Cancer Society. Atlanta, Ga 2018.

  2. Murphy D, et al. Why healthcare providers should focus on the fertility of AYA cancer survivors: it’s not too late! Front Oncol. 2013;3:248.

    PubMed  PubMed Central  Google Scholar 

  3. de Roo SF, Rashedi AS, Beerendonk CCM, Anazodo A, de Man AM, Nelen WLDM, et al. Global oncofertility index—data gap slows progress†. Biol Reprod. 2017;96:1124–8.

    PubMed  PubMed Central  Google Scholar 

  4. Letourneau JM, Ebbel EE, Katz PP, Oktay KH, McCulloch CE, Ai WZ, et al. Acute ovarian failure underestimates age-specific reproductive impairment for young women undergoing chemotherapy for cancer. Cancer. 2012;118:1933–9.

    PubMed  Google Scholar 

  5. Anderson C, Engel SM, Mersereau JE, Black KZ, Wood WA, Anders CK, et al. Birth outcomes among adolescent and young adult cancer survivors. Jama Oncol. 2017;3:1078–84. https://doi.org/10.1001/jamaoncol.2017.0029.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reulen RC, Zeegers MP, Wallace WHB, Frobisher C, Taylor AJ, Lancashire ER, et al. Pregnancy outcomes among adult survivors of childhood cancer in the British Childhood Cancer Survivor Study. Cancer Epidemiol Prev Biomarkers. 2009;18:2239–47.

    Google Scholar 

  7. Chiarelli A, Marrett L, Darlington G. Pregnancy outcomes in females after treatment for childhood cancer. Epidemiol Camb Mass. 2000;11:161–6.

    CAS  Google Scholar 

  8. Tang M, Webber K. Fertility and pregnancy in cancer survivors. Obstetric Med. 2018;11:110–5.

    Google Scholar 

  9. Norwitz ER, Stern HM, Grier H, Lee-Parritz A. Placenta percreta and uterine rupture associated with prior whole body radiation therapy. Obstet Gynecol. 2001;98:929.

    CAS  PubMed  Google Scholar 

  10. Mueller BA, Chow EJ, Kamineni A, Daling JR, Fraser A, Wiggins CL, et al. Pregnancy outcomes in female childhood and adolescent cancer survivors: a linked cancer-birth registry analysis. Arch Pediatr Adolesc Med. 2009;163:879–86.

    PubMed  PubMed Central  Google Scholar 

  11. Signorello LB, Cohen SS, Bosetti C, Stovall M, Kasper CE, Weathers RE, et al. Female survivors of childhood cancer: preterm birth and low birth weight among their children. Jnci J National Cancer Inst. 2006;98:1453–61.

    Google Scholar 

  12. Green DM, Lange JM, Peabody EM, Grigorieva NN, Peterson SM, Kalapurakal JA, et al. Pregnancy outcome after treatment for Wilms tumor: a report from the National Wilms Tumor Long-Term Follow-Up Study. J Clin Oncol. 2010;28:2824–30.

    PubMed  PubMed Central  Google Scholar 

  13. Haggar FA, Pereira G, Preen D, Holman DC, Einarsdottir K. Adverse obstetric and perinatal outcomes following treatment of adolescent and young adult cancer: a population-based cohort study. PLoS One. 2014;9:e113292.

    PubMed  PubMed Central  Google Scholar 

  14. van de Loo L, van den Berg M, Overbeek A, van Dijk M, Damen L, Lambalk CB, et al. Uterine function, pregnancy complications, and pregnancy outcomes among female childhood cancer survivors. Fertil Steril. 2019;111:372–80.

    PubMed  Google Scholar 

  15. Gerstl B, Sullivan E, Ives A, Saunders C, Wand H, Anazodo A. Pregnancy outcomes after a breast cancer diagnosis: a systematic review and meta-analysis. Clin Breast Cancer. 2018;18:e79–88.

    PubMed  Google Scholar 

  16. Gelber S, Coates AS, Goldhirsch A, Castiglione-Gertsch M, Marini G, Lindtner J, et al. Effect of pregnancy on overall survival after the diagnosis of early-stage breast cancer. J Clin Oncol. 2001;19:1671–5.

    CAS  PubMed  Google Scholar 

  17. Gerstl B, Sullivan E, Chong S, Chia D, Wand H, Anazodo A. Reproductive outcomes after a childhood and adolescent young adult cancer diagnosis in female cancer survivors: a systematic review and meta-analysis. J Adolesc Young Adul. 2018;7:627–42. https://doi.org/10.1089/jayao.2018.0036.

    Article  Google Scholar 

  18. Black K, Nichols HB, Eng E, Rowley D. Prevalence of preterm, low birthweight, and small for gestational age delivery after breast cancer diagnosis: a population-based study. Breast Cancer Res. 2017;19:11.

    PubMed  PubMed Central  Google Scholar 

  19. Shliakhtsitsava K, Romero SA, Dewald S, Su IH. Pregnancy and child health outcomes in pediatric and young adult leukemia and lymphoma survivors: a systematic review. Leuk Lymphoma. 2017;59:1–17.

    Google Scholar 

  20. Hawkins M, Smith R. Pregnancy outcomes in childhood cancer survivors: probable effects of abdominal irradiation. Int J Cancer. 1989;43:399–402.

    CAS  PubMed  Google Scholar 

  21. Grigsby PW, Russell A, Bruner D, Eifel P, Koh WJ, Spanos W, et al. Late injury of cancer therapy on the female reproductive tract. Int J Radiat Oncol Biol Phys. 1995;31:1281–99.

    CAS  PubMed  Google Scholar 

  22. Critchley H, Bath LE, Wallace HW. Radiation damage to the uterus — review of the effects of treatment of childhood cancer. Hum Fertil. 2009;5:61–6.

    Google Scholar 

  23. Critchley H, et al. Abdominal irradiation in childhood; the potential for pregnancy. BJOG Int J Obstet Gynaecol. 1992;99:392–4.

    CAS  Google Scholar 

  24. Critchley HO, Buckley HC, Anderson DC. Experience with a ‘physiological’ steroid replacement regimen for the establishment of a receptive endometrium in women with premature ovarian failure. BJOG Int J Obstet Gynaecol. 1990;97:804–10.

    CAS  Google Scholar 

  25. Teh W, Stern C, Chander S, Hickey M. The impact of uterine radiation on subsequent fertility and pregnancy outcomes. Biomed Res Int. 2014;2014:1–8.

    Google Scholar 

  26. Kim E, Yoon G, Kim H-S. Chemotherapy-induced endometrial pathology: mimicry of malignancy and viral endometritis. Am J Transl Res. 2016;8:2459–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weston JT, Guin GH. Epithelial atypias with chemotherapy in 100 acute childhood leukemias. Cancer. 1955;8:179–86.

    CAS  PubMed  Google Scholar 

  28. Irving JA, McFarland DF, Stuart DS, Gilks BC. Mitotic arrest of endometrial epithelium after paclitaxel therapy for breast cancer. Int J Gynecol Pathol. 2000;19:395–7.

    CAS  PubMed  Google Scholar 

  29. Clement PB, Young RH. Endometrioid carcinoma of the uterine corpus: a review of its pathology with emphasis on recent advances and problematic aspects. Adv Anat Pathol. 2002;9:145–84.

    PubMed  Google Scholar 

  30. Wales C, Fadare O. Chemotherapy-associated endometrial atypia: a potential diagnostic pitfall. Int J Surg Pathol. 2018;26:229–31.

    PubMed  Google Scholar 

  31. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    CAS  PubMed  Google Scholar 

  32. Jones PA, Laird PW. Cancer-epigenetics comes of age. Nat Genet. 1999;21:ng0299_163.

    Google Scholar 

  33. Bath LE, Critchley HOD, Chambers SE, Anderson RA, Kelnar CJH, Wallace WHB. Ovarian and uterine characteristics after total body irradiation in childhood and adolescence: response to sex steroid replacement. BJOG Int J Obstet Gynaecol. 1999;106:1265–72.

    CAS  Google Scholar 

  34. Larsen EC, Schmiegelow K, Rechnitzer C, Loft A, Muller J, Nyboe Andersen A. Radiotherapy at a young age reduces uterine volume of childhood cancer survivors. Acta Obstet Gynecol Scand. 2004;83:96–102.

    PubMed  Google Scholar 

  35. Demas B, Hricak H, Jaffe R. Uterine MR imaging: effects of hormonal stimulation. Radiology. 1986;159:123–6.

    CAS  PubMed  Google Scholar 

  36. Arrivé L, Chang YC, Hricak H, Brescia RJ, Auffermann W, Quivey JM. Radiation-induced uterine changes: MR imaging. Radiology. 1989;170:55–8.

    PubMed  Google Scholar 

  37. Ng W-K. Radiation-associated changes in tissues and tumours. Curr Diagn Pathol. 2003;9:124–36.

    Google Scholar 

  38. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    CAS  PubMed  Google Scholar 

  39. Thomas ML, Marcato P. Epigenetic modifications as biomarkers of tumor development, therapy response, and recurrence across the cancer care continuum. Cancers. 2018;10:101.

    PubMed Central  Google Scholar 

  40. Epigenetic Regulators: New therapeutic targets for soft tissue sarcoma. Cancer Cell Microenviron 1, (2014).

  41. Esteller M. Epigenetics in cancer. New Engl J Med. 2008;358:1148–59.

    CAS  PubMed  Google Scholar 

  42. Helin K, Dhanak D. Chromatin proteins and modifications as drug targets. Nature. 2013;502:480–8.

    CAS  PubMed  Google Scholar 

  43. Farber LA, Ames JW, Rush S, Gal D. Laparoscopic ovarian transposition to preserve ovarian function before pelvic radiation and chemotherapy in a young patient with rectal cancer. Medgenmed Medsc Gen Med. 2005;7:66.

    Google Scholar 

  44. Moawad NS, Santamaria E, Rhoton-Vlasak A, Lightsey JL. Laparoscopic ovarian transposition before pelvic cancer treatment: ovarian function and fertility preservation. J Minim Invas Gyn L. 2017;24:28–35.

    Google Scholar 

  45. Brink P, Schumacher J, Schumacher J. Elevating the uterus (uteropexy) of five mares by laparoscopically imbricating the mesometrium. Equine Vet J. 2010;42:675–9.

    CAS  PubMed  Google Scholar 

  46. Azaïs H, Canova CH, Vesale E, Simon JM, Canlorbe G, Uzan C. Laparoscopic uterine fixation to spare fertility before pelvic radiation therapy. Fertil Steril. 2018;110:974–5.

    PubMed  Google Scholar 

  47. Köhler C, Marnitz S, Biel P, Cordes T. Successful delivery in a 39-year-old patient with anal cancer after fertility-preserving surgery followed by primary chemoradiation and low anti-Mullerian hormone level. Oncology. 2016;91:295–8.

    PubMed  Google Scholar 

  48. Ribeiro R, Rebolho JC, Tsumanuma FK, Brandalize GG, Trippia CH, Saab KA. Uterine transposition: technique and a case report. Fertil Steril. 2017;108:320–324.e1.

    PubMed  Google Scholar 

  49. Boemers TM, Schimke CM, Ludwikowski B, Ardelean M-A. Rotundum psoas hitch: a new method for colpohysteropexy in girls with bladder exstrophy. J Pediatr Urol. 2005;1:337–41.

    PubMed  Google Scholar 

  50. Brännström M, Johannesson L, Bokström H, Kvarnström N, Mölne J, Dahm-Kähler P, et al. Livebirth after uterus transplantation. Lancet. 2015;385:607–16.

    PubMed  Google Scholar 

  51. El-Akouri RR, Wranning CA, Mölne J, Kurlberg G, Brännström M. Pregnancy in transplanted mouse uterus after long-term cold ischaemic preservation. Hum Reprod. 2003;18:2024–30.

    Google Scholar 

  52. Mihara M, Kisu I, Hara H, Iida T, Araki J, Shim T, et al. Uterine autotransplantation in cynomolgus macaques: the first case of pregnancy and delivery. Hum Reprod. 2012;27:2332–40.

    PubMed  Google Scholar 

  53. Dahm-Kähler P, Wranning C, Lundmark C, Enskog A, Mölne J, Marcickiewicz J, et al. Transplantation of the uterus in sheep: methodology and early reperfusion events. J Obstet Gynaecol Re. 2008;34:784–93.

    Google Scholar 

  54. Johannesson L, Järvholm S. Uterus transplantation: current progress and future prospects. Int J Women's Health. 2016;8:43–51.

    Google Scholar 

  55. Armenti VT, et al. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. Clin Transpl. 2004:103–14.

  56. Sibanda N, Briggs DJ, Davison JM, Johnson RJ, Rudge CJ. Pregnancy after organ transplantation: a report from the U.K. transplant pregnancy registry. Transplantation. 2007;83:1301–7.

    PubMed  Google Scholar 

  57. Briggs DJ, Jager K. The first year of the new ERA–EDTA Registry. Nephrol Dial Transplant. 2001;16:1130–1.

    CAS  PubMed  Google Scholar 

  58. Ogilvy-Stuart A, Alet S. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101(Suppl 2):109–16.

    PubMed  PubMed Central  Google Scholar 

  59. Delanian S, Balla-Mekias S, Lefaix J. Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17:3283–90.

    CAS  Google Scholar 

  60. Lefaix J-L, Delanian S, Leplat JJ, Tricaud Y, Martin M, Nimrod A, et al. Successful treatment of radiation-induced fibrosis using CuZn-SOD and Mn-SOD: an experimental study. Int J Radiat Oncol Biol Phys. 1996;35:305–12.

    CAS  PubMed  Google Scholar 

  61. Letur-Könirsch H, Guis F, Delanian S. Uterine restoration by radiation sequelae regression with combined pentoxifylline-tocopherol: a phase II study. Fertil Steril. 2002;77:1219–26.

    PubMed  Google Scholar 

  62. Acharya S, Yasmin E, Balen AH. The use of a combination of pentoxifylline and tocopherol in women with a thin endometrium undergoing assisted conception therapies – a report of 20 cases. Hum Fertil. 2009;12:198–203.

    CAS  Google Scholar 

  63. Letur-Konirsch H, Delanian S. Successful pregnancies after combined pentoxifylline-tocopherol treatment in women with premature ovarian failure who are resistant to hormone replacement therapy. Fertil Steril. 2003;79:439–41.

    PubMed  Google Scholar 

  64. Lédée-Bataille N, et al. Combined treatment by pentoxifylline and tocopherol for recipient women with a thin endometrium enrolled in an oocyte donation programme. Hum Reprod. 2002;17:1249–53.

    PubMed  Google Scholar 

  65. Soria J, Giovannangeli LM, Jolchine EI, Chassoux G. Pentoxifylline, fibrinogen and leukocytes. Blood Coagul Fibrinolysis. 1990;1:485–8.

    CAS  PubMed  Google Scholar 

  66. Armstrong M, Needham D, Hatchell D, Nunn R. Effect of pentoxifylline on the flow of polymorphonuclear leukocytes through a model capillary. Angiology. 1990;41:253–62.

    PubMed  Google Scholar 

  67. Ciuffetti G, Mercuri M, Ott C, Lombardini R, Paltriccia R, Lupattelli G, et al. Use of pentoxifylline as an inhibitor of free radical generation in peripheral vascular disease. Eur J Clin Pharmacol. 1991;41:511–5.

    CAS  PubMed  Google Scholar 

  68. Caddeo C, Manca ML, Peris JE, Usach I, Diez-Sales O, Matos M, et al. Tocopherol-loaded transfersomes: in vitro antioxidant activity and efficacy in skin regeneration. Int J Pharm. 2018;551:34–41.

    CAS  PubMed  Google Scholar 

  69. Remacle J, Raes M, Toussaint O, Renard P, Rao G. Low levels of reactive oxygen species as modulators of cell function. Mutat Res Dnaging. 1995;316:103–22.

    CAS  Google Scholar 

  70. Denis M. Antioxidant therapy partially blocks immune-induced lung fibrosis. Inflammation. 1995;19:207–19.

    CAS  PubMed  Google Scholar 

  71. Subakir SB, Madjid OA, Sabariah S, Affandi B. Oxidative stress, vitamin E and progestin breakthrough bleeding. Hum Reprod. 2000;15:18–23.

    CAS  PubMed  Google Scholar 

  72. Hu J, Song K, Zhang J, Zhang Y, Tan B-Z. Effects of menstrual blood-derived stem cells on endometrial injury repair. Mol Med Rep. 2018. https://doi.org/10.3892/mmr.2018.9744.

  73. Zhu X, et al. Stem cells and endometrial regeneration: from basic research to clinical trial. Curr Stem Cell Res T. 2018;14.

  74. Zhang L, Li Y, Guan CY, Tian S, Lv XD, Li JH, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Res Ther. 2018;9:36.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. OUP accepted manuscript. Hum Reprod Update. 2018;25:114–33.

    Google Scholar 

  76. Gonfloni S, di Tella L, Caldarola S, Cannata SM, Klinger FG, di Bartolomeo C, et al. Inhibition of the c-Abl–TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med. 2009;15:1179–85.

    CAS  PubMed  Google Scholar 

  77. Livera G, Petre-Lazar B, Guerquin MJ, Trautmann E, Coffigny H, Habert R. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction. 2008;135:3–12.

    CAS  PubMed  Google Scholar 

  78. Goldman KN, Chenette D, Arju R, Duncan FE, Keefe DL, Grifo JA, et al. mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy. Proc National Acad Sci. 2017;114:3186–91.

    CAS  Google Scholar 

  79. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008;320:226–30.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Garg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, D., Johnstone, E.B., Lomo, L. et al. Looking beyond the ovary for oncofertility care in women: uterine injury as a potential target for fertility-preserving treatments. J Assist Reprod Genet 37, 1467–1476 (2020). https://doi.org/10.1007/s10815-020-01792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01792-9

Keywords

Navigation