Skip to main content

Advertisement

Log in

An explanation of the mechanisms underlying fragile X-associated premature ovarian insufficiency

  • Commentary
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Fragile X and fragile X-associated tremor-ataxia syndrome (FXTAS) are caused by mutations of the FMR1 gene. The mutations causing FXTAS can expand in a generation to a “full mutation” causing fragile X syndrome. The mutations causing FXTAS and the phenotype, fragile X-associated premature ovarian insufficiency (FXPOI), are referred to as the FMR1 premutation (PM). The objective of this paper was to formulate a theory to explain the Mechanism for FXPOI.

Recent research on fragile X syndrome and FXTAS has led to sophisticated theories about the mechanisms underlying these diseases. It has been proposed that similar mechanisms underlie FXPOI. Utilizing recent research on FXTAS, but a more detailed application of ovarian physiology, we present a more ovarian specific theory as to the primary mechanism explaining the development of FXPOI.

The FXPOI phenotype may best be viewed as derivative of the observation that fragile X PM carriers experience menopause an average of 5 years earlier than non-carriers. Women carrying the PM experience an earlier menopause because of an accelerated activation of their primordial follicle pool. This acceleration of primordial follicle activation occurs, in part, because of diminished AMH production. AMH production is diminished because of accelerated atresia of early antral follicles. This accelerated atresia likely occurs because the fragile X PM leads to a slowing of the rate of granulosa cell mitosis in some follicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dean DD, Muthuswamy S, Agarwal S. Fragile X syndrome: current insight. Egypt J Med Hum Genet. 2016;17:303–9.

  2. Gao FB, Richter JD. Microsatellite expansion diseases: repeat toxicity found in translation. Neuron. 2017;93:249–51.

    CAS  PubMed  Google Scholar 

  3. Neueder A. RNA-mediated disease mechanisms in neurodegenerative disorders. J Mol Biol. 2019;432:1780–91.

    Google Scholar 

  4. Yrigollen CM, Davidson BL. CRISPR to the rescue: advances in gene editing for FMR1 gene. Brain Sci. 2019;9(1):17.

    CAS  PubMed Central  Google Scholar 

  5. Kong HE, Zhao J, Jin P, Jin Y. Fragile X-associated tremor/ataxia syndrome: from molecular pathogenesis to development of therapeutics. Front Cell Neurosci. 2017;11:128.

    PubMed  PubMed Central  Google Scholar 

  6. Murray A. Premature Ovarian Failure and the FMR1 gene. Semin Reprod Med. 2000;18(1):59–66.

    CAS  PubMed  Google Scholar 

  7. Nolan SL, Brown WT, Glicksman A, Houck GE, Gargano A, et al. Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. Am J Hum Genet. 2003;72:454–64.

    Google Scholar 

  8. Rodriguez-Revenga L, Madrigal I, Pagonabarraga J, Xuncia M, Badenas C, et al. Penetrance of FMR1 premutation associated pathologies in fragile X families. Eur J Hum Genet. 2009;17:1359–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Berry-Kravis E, Abrams L, Coffey SM, Hall DA, Greco C, et al. Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing guidelines. Mov Disord. 2017;22(14):2018–30.

    Google Scholar 

  10. Buijsen RAM, Sellier C, Severijnen LAWFM, Oulad-Abdelghani M, Verhagen RFM, et al. FMRpolyG-positive inclusions in CNS and non-CNS organs of a fragile X premutation carrier with fragile X-associated tremor/ataxia syndrome. Acta Neuropathol Commun. 2014;2:862–6.

    Google Scholar 

  11. Sellier C, Buijsen RAM, He F, Natia S, Jung L, et al. Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron. 2017;93:331–47.

  12. Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier S. Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in fragile X tremor ataxia syndrome. Brain Res. 1693;2018:43–54.

    Google Scholar 

  13. Ma L, Herren AW, Espinal G, Randol J, McLaughlin B, et al. Composition of intranuclear inclusions of fragile X-associated tremor/ataxia syndrome. Acta Neuropathol Commun. 2019;7:143.

    PubMed  PubMed Central  Google Scholar 

  14. O’Rourke JR, Swanson MS. Mechanisms of RNA-mediated disease. J Biol Chem. 2009;284(12):7419–23.

    PubMed  PubMed Central  Google Scholar 

  15. Arocena DG, Iwahashi CK, Won N, Beilina A, Ludwig AL, et al. Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells. Hum Mol Genet. 2005;14(23):3661–71.

    CAS  PubMed  Google Scholar 

  16. Dubinska-Magiera M, Chmielewska M, Koziol K, Machowska M, Hutchison CJ, et al. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma. 2016;253:943–56.

    CAS  PubMed  Google Scholar 

  17. Wittenberger MD, Hagerman RJ, Sherman SL, McConkie-Rosell A, Weit CK, et al. The FMR1 premutation and reproduction. Fertil Steril. 2007;87:456–65.

    CAS  PubMed  Google Scholar 

  18. Martin JR, Arici A. Fragile X and reproduction. Curr Opin Obstet Gynecol. 2008;20:216–20.

  19. Tsafrir A, Altarescu G, Margalioth E, Brooks B, Renbaum P, et al. PGD for fragile X syndrome: ovarian function is the main determinant of success. Hum Reprod. 2010;25(10):2619–36.

    Google Scholar 

  20. Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci. 2017;10:290.

  21. Fink DA, Nelson LM, Pyeritz R, Johnson J, Sherman SL. Fragile X associated primary ovarian insufficiency (FXPOI): case report and literature review. Front Genet 2018; 9:article 529.

  22. Hoffman GE, Le WW, Entezam A, Otsuka N, Tong ZB, et al. Ovarian abnormalities in a mouse model of fragile X primary ovarian insufficiency. J Histochem Cytochem. 2012;60(6):439–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Buijsen RAM, Visser JA, Kramer P, Severijnen EAWFM, Gearing M, et al. Presence of inclusions positive for polyglycine containing protein, FMRpolyG, indicates that repeat-associated non-AUG translation plays a role in fragile X-associated primary ovarian insufficiency. Hum Reprod. 2016;31(1):158–68.

    CAS  PubMed  Google Scholar 

  24. Lu C, Lin L, Tan H, Wu H, Sherman SL, et al. Fragile X permutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet. 2012;21(23):5039–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Morabia A, Costanza MC, World Health Organization Collaborative Study of Neoplasia and Steroid Contraceptives. International variability in ages at menarche, first livebirth, and menopause. Am J Epidemiol. 1998;148:1195–205.

    CAS  PubMed  Google Scholar 

  26. Van Noord PAH, Boersma H, Dubas JS, Te Velde E, Dorland M. Age at natural menopause in a population-based screening cohort: the role of menarche, fecundity, and lifestyle factors. Fertil Steril. 1997;68(1):95–102.

    PubMed  Google Scholar 

  27. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol. 1986;67(4):604–6.

    CAS  PubMed  Google Scholar 

  28. Murray A, Ennis S, MacSwiney F, Webb J, Morton NE. Reproductive and menstrual history of females with fragile X expansions. Eur J Hum Genet. 2000;8:247–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sullivan SD, Weit C, Sherman S. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med. 2011;29(4):299–307.

    PubMed  Google Scholar 

  30. Avis NE, McKinley SM. The Massachusetts women’s health study: an epidemiological investigation of the menopause. JAMWA. 1995;50(2):45–51.

    CAS  PubMed  Google Scholar 

  31. Crawford SL, Casey VA, Avis NE, McKinlay SM. A longitudinal study of weight and the menopause transition: results from the Massachusetts women’s health study. Menopause. 2000;7(2):96–104.

    CAS  PubMed  Google Scholar 

  32. Wallace WHB, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS One. 2010;5(1):e8772.

    PubMed  PubMed Central  Google Scholar 

  33. Depmann M, Faddy MJ, van der Schouw YT, Peeters PHM, Kelsey TW, et al. The relationship between variation in size of the primordial follicle pool and age at natural menopause. J Clin Endocrinol Metab. 2015;100:E845–51.

    CAS  PubMed  Google Scholar 

  34. Hansen KR, Knowlton NS, Thyer AC, Charleston JS. Soules, et al. A new model of reproductive aging: the decline in non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(4):699–707.

    PubMed  Google Scholar 

  35. Sherman SL, Curnow EC, Easley CA, Hukema RK, Tejada MI, et al. Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J Neurodev Disord. 2014;6:26.

    PubMed  PubMed Central  Google Scholar 

  36. Dioguardi CC, Uslu B, Haynes M, Kurus M, Gul M, et al. Granulosa cell and oocyte mitochondrial abnormalities in a mouse model of fragile X primary ovarian insufficiency. Mol Hum Reprod. 2016;22(6):384–96.

    CAS  Google Scholar 

  37. McNatty KP, Smith DM, Makris A, Osathanondh R, Ryan KJ. The microenvironment of the human antral follicle: interrelationships among steroid levels in antral follicles, the population of granulosa cells, and the status of the oocyte in vivo and in vitro. J Clin Endocrinol Metab. 1979;49(5):851–60.

    CAS  PubMed  Google Scholar 

  38. Spath MA, Feuth TB, Allen EG, Smits APT, Yntema HG, et al. Intra-individual stability over time of standardized anti-Müllerian hormone in FMR1 premutation carriers. Hum Reprod. 2011;26(8):2185–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rohr J, Allen EG, Charen K, Giles J, He W, et al. Anti-Müllerian hormone indicates early ovarian decline in fragile X mental retardation (FMR1) premutation carriers: a preliminary study. Hum Reprod. 2008;23(5):1220–5.

    CAS  PubMed  Google Scholar 

  40. Kim JY. Control of ovarian primal follicle activation. Clin Exp Reprod Med. 2012;39(1):10–4.

    PubMed  PubMed Central  Google Scholar 

  41. Pankhurst MW. A putative role for anti-Müllerian hormone (AMH) in optimizing ovarian reserve expenditure. J Endocrinol. 2017;233:R1–R13.

    CAS  PubMed  Google Scholar 

  42. Durlinger ALL, Gruijters MJG, Kramer P, Karels B, Ingraham HA, et al. Anti-Müllerian hormone inhibits initiation of primordial follicle growth the mouse ovary. Endocrinol. 2002;143(3):1076–84.

    CAS  Google Scholar 

  43. Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen APN, Hovatta O. Anti-Müllerian hormone inhibits initiation of growth of human primordial follicles in vitro. Hum Reprod. 2006;21(9):2223–7.

    CAS  PubMed  Google Scholar 

  44. Durlinger ALL, Kramer P, Karels B, De Jong FH, Uilenbroek JTJ, et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinol. 1999;140:5789–96.

    CAS  Google Scholar 

  45. Leonte L, Coculescu M, Radian S, Fica S, Caragheorgheopol A, et al. Anti-Müllerian hormone (AMH) as a useful marker in diagnosis of polycystic ovary syndrome. Acta Endocrinol. 2007;3(1):1–11.

    CAS  Google Scholar 

  46. Tilly JL. Apoptosis and ovarian function. Rev Reprod. 1996;1:162–72.

    CAS  PubMed  Google Scholar 

  47. Chun SY, Eisenhauer KM, Billig H, Perlas E, Hsueh AJ. Hormonal regulation of apoptosis in early antral follicles: follicle-stimulations hormone as a major survival factor. Endocrinol. 1996;137(4):1447–56.

    CAS  Google Scholar 

  48. Markström E, Svensson EC, Shah R, Svanberg B, Billig H. Survival factors regulating ovarian apoptosis-dependence on follicle differentiation. Reprod. 2002;123:23–30.

    Google Scholar 

  49. Orisaka M, Tajima K, Tsang BK, Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res. 2009;2:9.

    PubMed  PubMed Central  Google Scholar 

  50. Meng L, Jan SZ, Hamer G, van Pelt AM, van der Stelt I, et al. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biol Reprod. 2018;99(4):853–63.

    PubMed  Google Scholar 

  51. Matsuda-Minehata F, Inoue N, Goto Y, Manabe N. The regulation of ovarian granulose cell death by pro- and anti-apoptotic molecules. J Reprod Dev. 2006;53:695–705.

    Google Scholar 

  52. McNatty KP, Reader K, Smith P, Heath DA, Jungle JL. Control of ovarian follicular development to the gonadotropin-dependent phase: a 2006 perspective. Soc Reprod Fertil Suppl. 2007;64:55–68.

    CAS  PubMed  Google Scholar 

  53. Weenen C, Laven JSE, von Bergh ARM, Cranfield M, Groome NP, et al. Anti-Müllerian hormone expression pattern in human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10(2):76–83.

    Google Scholar 

  54. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55.

    CAS  PubMed  Google Scholar 

  55. Lavranos TC, Mathis JM, Latham SE, Kalionis B, Shay JW, Rodgers RJ. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol Reprod. 1999;61:338–66.

    Google Scholar 

  56. Rodgers RJ, Irving-Rodgers HF, Russell DL. Extracellular matrix of the developing ovarian follicle. Reprod. 2003;126:415–24.

    CAS  Google Scholar 

  57. Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr Rev. 2018;39:1–20.

    PubMed  Google Scholar 

  58. Billig H, Furuta I, Hsueh AJW. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinol. 1993;133(5):2204–12.

    CAS  Google Scholar 

  59. Yaba A, Bianchi V, Borini A, Johnson J. A putative mitotic checkpoint on mTOR function controls cell proliferation and survival in ovarian granulosa cells. Reprod Sci. 2008;15(2):128–38.

    CAS  PubMed  Google Scholar 

  60. Yu J, Yaba A, Kasıman C, Thompson T, Johnson J. mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One. 2011;6(7):e21415.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Elizur SE, Lebovitz O, Derech-Halm S, Dratviman-Storobinsky O, Feldman B, et al. Elevated levels of FMR1 mRNA in granulosa cells are associated with low ovarian reserve in FMR1 premutation carriers. PLoS One. 2014;9(8):e105121.

    PubMed  PubMed Central  Google Scholar 

  62. Allen EG, Sullivan AK, Marcus M, Small C, Dominguez C, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod. 2007;22(8):2142–52.

    CAS  PubMed  Google Scholar 

  63. Chang MC, DeCaro JJ, Zheng M, Gearing M, Shubeck L, et al. Ovarian histopathology and ubiquitin-immunophenotypic features in fragile X-associated primary ovarian insufficiency: a study of five cases and selected controls. Histopathology. 2011;59(5):1018–23.

    PubMed  PubMed Central  Google Scholar 

  64. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reprod. 2010;140:489–504.

    CAS  Google Scholar 

  65. Niakan KK, Han J, Pederson PA, Simon C, Reijo Pera RA. Human pre-implantation embryo development. Development. 2012;139:829–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 2006;3:2.

    PubMed  PubMed Central  Google Scholar 

  67. Williams CJ, Erickson GF. Morphology and physiology of the ovary. [Updated 2012 Jan 30]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278951/.

  68. Reches A, Malcov M, Ben-Yosef D, Azem F, Amit A, Yaron Y. Preimplantation genetic diagnosis for fragile X syndrome: is there increased transmission of abnormal FMR1 alleles among female heterozygotes? Prenat Diagn. 2009;29(9):57–61.

    CAS  PubMed  Google Scholar 

  69. Platteau P, Sermon K, Seneca S, Van Steirteghem A, Devroe P, et al. Preimplantation genetic diagnosis for fragile X syndrome: difficult but not impossible. Hum Reprod. 2002;17(11):2807–12.

  70. Avraham S, Almog B, Reches A, Zakar L, Malcov M, et al. The ovarian response in fragile X patients and permutations carriers undergoing IVF-PGD: reappraisal. Hum Reprod. 2017;32(7):1508–11.

    CAS  PubMed  Google Scholar 

  71. Van Deerlin PG, Cekleniak N, Coutifaris C, Boyd J, Strauss JF. Evidence for the oligoclonal origin of the granulosa cell population of the mature human follicle. J Clin Endocrinol Metab. 1997;82:3019–24.

    PubMed  Google Scholar 

  72. Elvin JA, Matzuk MM. Mouse models of ovarian failure. Rev Reprod. 1998;3:183–95.

    CAS  PubMed  Google Scholar 

  73. Sullivan AK, Marcus M, Epstein MP, Allen EG, Anido AE, et al. Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod. 2004;20(2):402–12.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce I. Rose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, B.I., Brown, S.E. An explanation of the mechanisms underlying fragile X-associated premature ovarian insufficiency. J Assist Reprod Genet 37, 1313–1322 (2020). https://doi.org/10.1007/s10815-020-01774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01774-x

Keywords

Navigation