Skip to main content

Advertisement

Log in

The role and mechanism of asymmetric dimethylarginine in fetal growth restriction via interference with endothelial function and angiogenesis

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Fetal growth restriction (FGR) is a high-risk pregnancy, and placental dysfunction is the main cause of FGR. The upregulation of asymmetric dimethylarginine (ADMA) is linked to FGR pathology, but the mechanism needs to be investigated.

Methods

The levels of ADMA and other related molecules were measured in human biological samples. We further used human umbilical vein endothelial cells (HUVECs) to reveal the mechanism of ADMA-induced FGR in vitro.

Results

Compared with the control group, FGR patients had higher placental resistance, and ADMA levels were increased in the maternal blood, cord blood, and placenta; additionally, nitric oxide (NO) production decreased, accompanied by a decreased expression of endogenous NO synthase (eNOS). The expression of vascular growth factor (VEGF) and placental growth factor (PLGF) in the maternal blood during the third trimester and umbilical cord of the FGR group was lower than the control group. The PLGF levels in the placentas of the FGR group were also reduced, while the expression of soluble fms-like tyrosine kinase-1 (sFlt-1) increased. In in vitro cell experiments, NO production was obviously lower when the cells were exposed to 100 μM of ADMA, with no difference in eNOS expression. There was a dose-dependent decrease in PLGF expression with increasing doses of ADMA, and the levels of sFlt-1 increased. Moreover, we confirmed that tube formation in HUVECs was lower after ADMA treatment compared with the control group.

Conclusion

The accumulation of ADMA during pregnancy has an adverse effect on fetal development via interference with placental endothelial function and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2019;10:67–83.

    Google Scholar 

  2. American College of Obstetricians and Gynecologists. ACOG Practice bulletin no. 134: fetal growth restriction. Obstet Gynecol. 2013;121(5):1122–33.

    Article  Google Scholar 

  3. Hoffman ML, Reed SA, Pillai SM, Jones AK, McFadden KK, Zinn SA, et al. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: the effects of poor maternal nutrition during gestation on offspring postnatal growth and metabolism. J Anim Sci. 2017;95(5):2222–32.

    CAS  PubMed  Google Scholar 

  4. Kramer MS, Zhang X, Dahhou M, Yang S, Martin RM, Oken E, et al. Does fetal growth restriction cause later obesity? Pitfalls in analyzing causal mediators as confounders. Am J Epidemiol. 2017;185(7):585–90.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martino F, Magenta A, Pannarale G, Martino E, Zanoni C, Perla FM, et al. Epigenetics and cardiovascular risk in childhood. J Cardiovasc Med. 2016;17(8):539–46.

    Article  CAS  Google Scholar 

  6. Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol. 2006;49(2):270–83.

    Article  PubMed  Google Scholar 

  7. Groom KM, David AL. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S829–40.

    Article  CAS  PubMed  Google Scholar 

  8. Sato Y. Endovascular trophoblast and spiral artery remodeling. Mol Cell Endocrinol. 2019;110699.

  9. Su JB. Vascular endothelial dysfunction and pharmacological treatment. World J Cardiol. 2015;7(11):719–41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2017;218(2S):S745–61.

    Google Scholar 

  11. Zanardo V, Visentin S, Trevisanuto D, Bertin M, Cavallin F, Cosmi E. Fetal aortic wall thickness: a marker of hypertension in IUGR children? Hypertens Res. 2013;36(5):440–3.

    Article  PubMed  Google Scholar 

  12. Nardozza LM, Caetano AC, Zamarian AC, Mazzola JB, Silva CP, Marçal VM, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295(5):1061–77.

    Article  PubMed  Google Scholar 

  13. Yzydorczyk C, Armengaud JB, Peyter AC, Chehade H, Cachat F, Juvet C, et al. Endothelial dysfunction in individuals born after fetal growth restriction: cardiovascular and renal consequences and preventive approaches. J Dev Orig Health Dis. 2017;8(4):448–64.

    Article  CAS  PubMed  Google Scholar 

  14. Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “great obstetrical syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201.

    Article  PubMed  Google Scholar 

  15. Johal T, Lees CC, Everett TR, Wilkinson IB. The nitric oxide pathway and possible therapeutic options in pre-eclampsia. Br J Clin Pharmacol. 2014;78(2):244–57.

    Article  CAS  PubMed  Google Scholar 

  16. Reynolds LP, Borowicz PP, Caton JS, Vonnahme KA, Luther JS, Buchanan DS, et al. Uteroplacental vascular development and placental function: an update. Int J Dev Biol. 2010;54(2–3):355–66.

    Article  CAS  PubMed  Google Scholar 

  17. Krause BJ, Hanson MA, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta. 2011;32(11):797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ikenouchi-Sugita A, Yoshimura R, Kishi T, Umene-Nakano W, Hori H, Hayashi K, et al. Three polymorphisms of the eNOS gene and plasma levels of metabolites of nitric oxide in depressed Japanese patients: a preliminary report. Hum Psychopharmacol. 2011;26(7):531–4.

    Article  CAS  PubMed  Google Scholar 

  19. Huang LT, Hsieh CS, Chang KA, Tain YL. Roles of nitric oxide and asymmetric dimethylarginine in pregnancy and fetal programming. Int J Mol Sci. 2012;13(11):14606–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adamopoulos PG, Mavrogiannis AV, Kontos CK, Scorilas A. Novel alternative splice variants of the human protein arginine methyltransferase 1 (PRMT1) gene, discovered using next-generation sequencing. Gene. 2019;699:135–44.

    Article  CAS  PubMed  Google Scholar 

  21. You-Lin T, Li-Tung H. Restoration of asymmetric dimethylarginine-nitric oxide balance to prevent the development of hypertension. Int J Mol Sci. 2014;15(7):11773–82.

    Article  CAS  Google Scholar 

  22. Böger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “l-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr. 2004;134(10 Suppl):2842–7 discussion 2853.

    Article  Google Scholar 

  23. Ehsanipoor RM, Fortson W, Fitzmaurice LE, Liao WX, Wing DA, Chen DB, et al. Nitric oxide and carbon monoxide production and metabolism in preeclampsia. Reprod Sci. 2013;20(5):542–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Travaglino A, Raffone A, Saccone G, Migliorini S, Maruotti GM, Esposito G, et al. Placental morphology, apoptosis, angiogenesis and epithelial mechanisms in early-onset preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2019;234:200–6.

    Article  CAS  PubMed  Google Scholar 

  25. De Falco S. The discovery of placenta growth factor and its biological activity. Exp Mol Med. 2012;44(1):1–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Vanella L, Di Giacomo C, Acquaviva R. The DDAH/NOS pathway in human prostatic cancer cell lines: antiangiogenic effect of LNAME. Int J Oncol. 2011;39(5):1303–10.

    CAS  PubMed  Google Scholar 

  27. Groesch KA, Torry RJ, Wilber AC, Abrams R, Bieniarz A, Guilbert LJ, et al. Nitric oxide generation affects pro- and anti-angiogenic growth factor expression in primary human trophoblast. Placenta. 2011;32(12):926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He Q, Liu X, Zhong Y, Xu SS, Zhang ZM, Tang LL, et al. Arginine bioavailability and endothelin-1 system in the regulation of vascular function of umbilical vein endothelial cells from intrauterine growth restricted newborns. Nutr Metab Cardiovasc Dis. 2018;28(12):1285–95.

    Article  CAS  PubMed  Google Scholar 

  29. Laskowska M, Laskowska K, Oleszczuk J. The relation of maternal serum eNOS, NOSTRIN and ADMA levels with aetiopathogenesis of preeclampsia and/or intrauterine fetal growth restriction. J Matern Fetal Neonatal Med. 2015;28(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  30. Wikström AK, Haglund B, Olovsson M, Lindeberg SN. The risk of maternal ischaemic heart disease after gestational hypertensive disease. BJOG. 2005;121(11):1486–91.

    Article  Google Scholar 

  31. Lyall F, Robson SC, Bulmer JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension. 2013;62(6):1046–54.

    Article  CAS  PubMed  Google Scholar 

  32. Duhig KE, Chappell LC, Shennan AH. How placental growth factor detection might improve diagnosis and management of pre-eclampsia. Expert Rev Mol Diagn. 2014;14(4):403–6.

    Article  CAS  PubMed  Google Scholar 

  33. Al-Ani B, Hewett PW, Cudmore MJ, Fujisawa T, Saifeddine M, Williams H, et al. Activation of proteinase-activated receptor 2 stimulates soluble vascular endothelial growth factor receptor 1 release via epidermal growth factor receptor transactivation in endothelial cells. Hypertension. 2010;55(3):689–97.

    Article  CAS  PubMed  Google Scholar 

  34. Velauthar L, Plana MN, Kalidindi M, Zamora J, Thilaganathan B, Illanes SE. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55,974 women. Ultrasound Obstet Gynecol. 2014;43(5):500–7.

    Article  CAS  PubMed  Google Scholar 

  35. Alfirevic Z, Stampalija T, Dowswell T. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2017;6(6):CD007529.

    PubMed  Google Scholar 

  36. Tsukahara H, Ohta N, Tokuriki S, Nishijima K, Kotsuji F, Kawakami H, et al. Determination of asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, in umbilical blood. Metabolism. 2008;57(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  37. Holden DP, Fickling SA, Whitley GS, Nussey SS. Plasma concentrations of asymmetric dimethylarginine, a natural inhibitor of nitric oxide synthase, in normal pregnancy and preeclampsia. Am J Obstet Gynecol. 1998;178(3):551–6.

    Article  CAS  PubMed  Google Scholar 

  38. Vida G, Sulyok E, Ertl T, Martens-Lobenhoffer J, Bode-Böger SM. Birth by cesarean section is associated with elevated neonatal plasma levels of dimethylarginines. Pediatr Int. 2012;54(4):476–9.

    Article  CAS  PubMed  Google Scholar 

  39. Vallance P, Leiper J. Cardiovascular biology of the asymmetric dimethylarginine: dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol. 2004;24(6):1023–30.

    Article  CAS  PubMed  Google Scholar 

  40. Masoura S, Kalogiannidis IA, Gitas G, Goutsioulis A, Koiou E, Athanasiadis A, et al. Biomarkers in preeclampsia: a novel approach to early detection of the disease. J Obstet Gynaecol. 2012;32(7):609–16.

    Article  CAS  PubMed  Google Scholar 

  41. Tsikas D, Bollenbach A, Savvidou MD. Inverse correlation between maternal plasma asymmetric dimethylarginine (ADMA) and birthweight percentile in women with impaired placental perfusion: circulating ADMA as an NO-independent indicator of fetal growth restriction. Amino Acids. 2017;50(2):341–51.

    Article  PubMed  CAS  Google Scholar 

  42. Rossmanith WG, Hoffmeister U, Wolfahrt S, Kleine B, McLean M, Jacobs RA, et al. Expression and functional analysis of endothelial nitric oxide synthase (eNOS) in human placenta. Mol Hum Reprod. 1999;5(5):487–94.

    Article  CAS  PubMed  Google Scholar 

  43. Xiao HB, Liu ZK, Lu XY, Deng CN, Luo ZF. Icariin regulates PRMT/ADMA/DDAH pathway to improve endothelial function. Pharmacol Rep. 2015;67(6):1147–54.

    Article  CAS  PubMed  Google Scholar 

  44. Braekke K, Ueland PM, Harsem NK, Staff AC. Asymmetric dimethylarginine in the maternal and fetal circulation in preeclampsia. Pediatr Res. 2009;66(4):411–5.

    Article  CAS  PubMed  Google Scholar 

  45. Poston L. Endothelial dysfunction in pre-eclampsia. Pharmacol Rep. 2006;58Suppl(Suppl):69–74.

    Google Scholar 

  46. Vida G, Sulyok E, Ertl T, Martens-Lobenhoffer J, Bode-Boger SM. Plasma asymmetric dimethylarginine concentration during the perinatal period. Neonatology. 2007;92(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  47. Mullins E, Prior T, Roberts I, Kumar S. Changes in the fetal and neonatal cytokine profile in pregnancies complicated by fetal growth restriction. Am J Reprod Immunol. 2013;69(5):441–8.

    Article  CAS  PubMed  Google Scholar 

  48. Garg P, Jaryal AK, Kachhawa G, Deepak KK, Kriplani A. Estimation of asymmetric dimethylarginine (ADMA), placental growth factor (PLGF) and pentraxin 3 (PTX 3) in women with preeclampsia. Pregnancy Hypertens. 2018:14245–51.

  49. Kajal K, Panda AK, Bhat J, Chakraborty D, Bose S, Bhattacharjee P, et al. Andrographolide binds to ATP-binding pocket of VEGFR2 to impede VEGFA-mediated tumor-angiogenesis. Sci Rep. 2019;9(1):4073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen DB, Zheng J. Regulation of placental angiogenesis. Microcirculation. 2014;2(1):15–25.

    Article  Google Scholar 

  51. Algeri P, Ornaghi S, Bernasconi DP, Cappellini F, Signorini S, Brambilla P, et al. Feto-maternal correlation of PTX3, sFlt-1 and PlGF in physiological and pre-eclamptic pregnancies. Hypertens Pregnancy. 2014;33(3):360–70.

    Article  CAS  PubMed  Google Scholar 

  52. Herraiz I, Simón E, Gómez-Arriaga PI, Quezada MS, García-Burguillo A, López-Jiménez EA, et al. Clinical implementation of the sFlt-1/PlGF ratio to identify preeclampsia and fetal growth restriction: a prospective cohort study. Pregnancy Hypertens. 2018;13:279–85.

    Article  CAS  PubMed  Google Scholar 

  53. Dröge LA, Höller A, Ehrlich L, Verlohren S, Henrich W, Perschel FH. Diagnosis of preeclampsia and fetal growth restriction with the sFlt-1/PlGF ratio: diagnostic accuracy of the automated immunoassay Kryptor? Pregnancy Hypertens. 2017;8:31–6.

    Article  PubMed  Google Scholar 

  54. Krishnan T, David AL. Placenta-directed gene therapy for fetal growth restriction. Semin Fetal Neonatal Med. 2017;22(6):415–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all subjects who have agreed to participate in the study, as well as the staff at the Beijing Obstetrics and Gynecology Hospital, Capital Medical University and Beijing Maternal and Child Health Care Hospital who participated in the establishment of the birth cohort.

Funding

This work was supported by Grant No 81571130090 from the China’s National Natural Science Foundation Program.

Author information

Authors and Affiliations

Authors

Contributions

YD: project development, experimental performation, data collection or management, data analysis, manuscript writing. JZ and RL: data collection or management, data analysis, manuscript writing. NX and SBY: data collection or management, data analysis, manuscript editing. YC and THL: project development, experimental design, data collection or management, data analysis, manuscript writing or editing.

Corresponding authors

Correspondence to Yi Chen or Tian-He Li.

Ethics declarations

The protocol for this study has been approved by the Medical Ethics Committee of the Beijing Obstetrics and Gynecology Hospital, Capital Medical University (ethics number 2016-KY-059-01).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Zhang, J., Liu, R. et al. The role and mechanism of asymmetric dimethylarginine in fetal growth restriction via interference with endothelial function and angiogenesis. J Assist Reprod Genet 37, 1083–1095 (2020). https://doi.org/10.1007/s10815-020-01750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01750-5

Keywords

Navigation