Skip to main content

Advertisement

Log in

Endometriosis, endocrine disrupters, and epigenetics: an investigation into the complex interplay in women with polybrominated biphenyl exposure and endometriosis

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Endocrine disrupting compounds (EDCs) have been shown to affect multiple biologic processes especially steroid-hormone processes. We sought to determine differences in DNA methylation exists between women with and without endometriosis following exposure to polybrominated biphenyl (PBB).

Methods

Cross-sectional study of 305 females in the Michigan PBB Registry. DNA was extracted, and DNA methylation was interrogated using the MethylationEPIC BeadChip (Illumina, San Diego, California). Demographic data was analyzed using Chi-squared and T tests. Linear regressions were performed for each cytosine-guanine dinucleotide (CpG) site, modeling the logit transformation of the β value as a linear function of the presence of endometriosis. Sensitivity analyses were conducted controlling for estradiol levels and menopausal status. Replication study performed evaluating for any association between CpGs reported in the literature and our findings.

Results

In total, 39,877 CpGs nominally associated with endometriosis (p < 0.05) after adjusting for age and cellular heterogeneity, although none remained significant after correction for multiple comparisons (FDR < 0.05). Pathway analysis of these CpGs showed enrichment in 68 biologic pathways involved in various endocrine, immunologic, oncologic, and cell regulation processes as well as embryologic reproductive tract development and function (FoxO, Wnt, and Hedgehog signaling). We identified 42,261 CpG sites in the literature reported to be associated with endometriosis; 2012 of these CpG sites were also significant in our cohort.

Conclusion

We found 39,877 CpG sites that nominally associated with endometriosis (p < 0.05) after adjusting for age and cellular heterogeneity; however, none remained significant after correction for multiple comparisons (FDR < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giudice LC. Clinical practice Endometriosis. N Engl J Med. 2010;362(25):2389–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldstein DP, deCholnoky C, Emans SJ, Leventhal JM. Laparoscopy in the diagnosis and management of pelvic pain in adolescents. J Reprod Med. 1980;24(6):251–6.

    CAS  PubMed  Google Scholar 

  3. Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin N Am. 1997;24(2):235–58.

    CAS  Google Scholar 

  4. Missmer SA, Hankinson SE, Spiegelman D, Barbieri RL, Marshall LM, Hunter DJ. Incidence of laparoscopically confirmed endometriosis by demographic, anthropometric, and lifestyle factors. Am J Epidemiol. 2004;160(8):784–96.

    PubMed  Google Scholar 

  5. Committee AP. Endometriosis and infertility: a committee opinion. Fertil Steril. 2012;98(3):591–8.

    Google Scholar 

  6. Nnoaham KE, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011;96(2):366–373.e8.

    PubMed  PubMed Central  Google Scholar 

  7. Moradi M, et al. Impact of endometriosis on women’s lives: a qualitative study. BMC Womens Health. 2014;14:123.

    PubMed  PubMed Central  Google Scholar 

  8. Culley L, Law C, Hudson N, Denny E, Mitchell H, Baumgarten M, et al. The social and psychological impact of endometriosis on women's lives: a critical narrative review. Hum Reprod Update. 2013;19(6):625–39.

    PubMed  Google Scholar 

  9. Hunt PA, Sathyanarayana S, Fowler PA, Trasande L. Female reproductive disorders, diseases, and costs of exposure to endocrine disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2016;101(4):1562–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kobayashi H. Ovarian cancer in endometriosis: epidemiology, natural history, and clinical diagnosis. Int J Clin Oncol. 2009;14(5):378–82.

    PubMed  Google Scholar 

  11. Wilbur MA, et al. Cancer implications for patients with endometriosis. Semin Reprod Med. 2017;35(1):110–6.

    CAS  PubMed  Google Scholar 

  12. Mu F, Rich-Edwards J, Rimm EB, Spiegelman D, Missmer SA. Endometriosis and risk of coronary heart disease. Circ Cardiovasc Qual Outcomes. 2016;9(3):257–64.

    PubMed  PubMed Central  Google Scholar 

  13. Mu F, et al. Association between endometriosis and hypercholesterolemia or hypertension. Hypertension. 2017;70(1):59–65.

    CAS  PubMed  Google Scholar 

  14. Macer ML, Taylor HS. Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstet Gynecol Clin N Am. 2012;39(4):535–49.

    Google Scholar 

  15. Li F, Alderman MH 3rd, Tal A, Mamillapalli R, Coolidge A, Hufnagel D, et al. Hematogenous dissemination of mesenchymal stem cells from endometriosis. Stem Cells. 2018;36(6):881–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3(2):93–110 43.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Paul Dmowski W, Braun DP. Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2004;18(2):245–63.

    CAS  PubMed  Google Scholar 

  18. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25(8):2082–6.

    CAS  PubMed  Google Scholar 

  19. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–99.

    PubMed  Google Scholar 

  20. Naqvi H, Ilagan Y, Krikun G, Taylor HS. Altered genome-wide methylation in endometriosis. Reprod Sci. 2014;21(10):1237–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rier SE. The potential role of exposure to environmental toxicants in the pathophysiology of endometriosis. Ann N Y Acad Sci. 2002;955:201–12 discussion 230–2, 396–406.

    CAS  PubMed  Google Scholar 

  22. Giudice LC. Environmental toxicants: hidden players on the reproductive stage. Fertil Steril. 2016;106(4):791–4.

    CAS  PubMed  Google Scholar 

  23. ACOG. ACOG Committee Opinion 575 - exposure to toxic environmental agents. Fertil Steril. 2013;100(4):931–4.

    Google Scholar 

  24. Mendola P, Messer LC, Rappazzo K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil Steril. 2008;89(2 Suppl):e81–94.

    PubMed  Google Scholar 

  25. Wang A, et al. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016;106(4):905–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–e150.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Terrell ML, Hartnett KP, Lim H, Wirth J, Marcus M. Maternal exposure to brominated flame retardants and infant Apgar scores. Chemosphere. 2015;118:178–86.

    CAS  PubMed  Google Scholar 

  28. Curtis SW, Conneely KN, Marder ME, Terrell ML, Marcus M, Smith AK. Intergenerational effects of endocrine-disrupting compounds: a review of the Michigan polybrominated biphenyl registry. Epigenomics. 2018;10(6):845–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? Environ Health Perspect. 2004;112(1):9–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sweeney AM, Symanski E. The influence of age at exposure to PBBs on birth outcomes. Environ Res. 2007;105(3):370–9.

    CAS  PubMed  Google Scholar 

  31. Rosen DH, Flanders WD, Friede A, Humphrey HE, Sinks TH. Half-life of polybrominated biphenyl in human sera. Environ Health Perspect. 1995;103(3):272–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. ATSDR, A.f.T.S.a.D.R., Toxicological profile for polychlorinated biphenyls (PCBs). U.S. Department of Health and Human Services, Public Health Service; Atlanta, 2000.

  33. Roy JR, Chakraborty S, Chakraborty TR. Estrogen-like endocrine disrupting chemicals affecting puberty in humans--a review. Med Sci Monit. 2009;15(6):RA137–45.

    CAS  PubMed  Google Scholar 

  34. Blanck HM, Marcus M, Tolbert PE, Rubin C, Henderson AK, Hertzberg VS, et al. Age at menarche and tanner stage in girls exposed in utero and postnatally to polybrominated biphenyl. Epidemiology. 2000;11(6):641–7.

    CAS  PubMed  Google Scholar 

  35. Blanck HM, Marcus M, Tolbert PE, Schuch C, Rubin C, Henderson AK, et al. Time to menopause in relation to PBBs, PCBs, and smoking. Maturitas. 2004;49(2):97–106.

    CAS  PubMed  Google Scholar 

  36. Hass JR, McConnell EE, Harvan DJ. Chemical and toxicologic evaluation of firemaster BP-6. J Agric Food Chem. 1978;26(1):94–9.

    CAS  PubMed  Google Scholar 

  37. Dannan GA, Moore RW, Besaw LC, Aust SD. 2,4,5,3′,4′,5′-Hexabromobiphenyl is both a 3-methylcholanthrene-and a phenobarbital-type inducer of microsomal drug metabolizing enzymes. Biochem Biophys Res Commun. 1978;85(1):450–8.

    CAS  PubMed  Google Scholar 

  38. Byrne JJ, Carbone JP, Hanson EA. Hypothyroidism and abnormalities in the kinetics of thyroid hormone metabolism in rats treated chronically with polychlorinated biphenyl and polybrominated biphenyl. Endocrinology. 1987;121(2):520–7.

    CAS  PubMed  Google Scholar 

  39. Jacobson MH, Darrow LA, Barr DB, Howards PP, Lyles RH, Terrell ML, et al. Serum polybrominated biphenyls (PBBs) and polychlorinated biphenyls (PCBs) and thyroid function among Michigan adults several decades after the 1973-1974 PBB contamination of livestock feed. Environ Health Perspect. 2017;125(9):097020.

    PubMed  PubMed Central  Google Scholar 

  40. Small CM, Cheslack-Postava K, Terrell M, Blanck HM, Tolbert P, Rubin C, et al. Risk of spontaneous abortion among women exposed to polybrominated biphenyls. Environ Res. 2007;105(2):247–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Small CM, Murray D, Terrell ML, Marcus M. Reproductive outcomes among women exposed to a brominated flame retardant in utero. Arch Environ Occup Health. 2011;66(4):201–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Curtis SW, Cobb DO, Kilaru V, Terrell ML, Kennedy EM, Marder ME, et al. Exposure to polybrominated biphenyl (PBB) associates with genome-wide DNA methylation differences in peripheral blood. Epigenetics. 2019;14(1):52–66.

    PubMed  PubMed Central  Google Scholar 

  43. Cummings AM, Metcalf JL, Birnbaum L. Promotion of endometriosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats and mice: time-dose dependence and species comparison. Toxicol Appl Pharmacol. 1996;138(1):131–9.

    CAS  PubMed  Google Scholar 

  44. Rier SE, Martin DC, Bowman RE, Dmowski WP, Becker JL. Endometriosis in rhesus monkeys (Macaca mulatta) following chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fundam Appl Toxicol. 1993;21(4):433–41.

    CAS  PubMed  Google Scholar 

  45. Rier SE, Turner WE, Martin DC, Morris R, Lucier GW, Clark GC. Serum levels of TCDD and dioxin-like chemicals in rhesus monkeys chronically exposed to dioxin: correlation of increased serum PCB levels with endometriosis. Toxicol Sci. 2001;59(1):147–59.

    CAS  PubMed  Google Scholar 

  46. Hoffman CS, Small CM, Blanck HM, Tolbert P, Rubin C, Marcus M. Endometriosis among women exposed to polybrominated biphenyls. Ann Epidemiol. 2007;17(7):503–10.

    PubMed  PubMed Central  Google Scholar 

  47. Yotova I, Hsu E, Do C, Gaba A, Sczabolcs M, Dekan S, et al. Epigenetic alterations affecting transcription factors and signaling pathways in stromal cells of endometriosis. PLoS One. 2017;12(1):e0170859.

    PubMed  PubMed Central  Google Scholar 

  48. Yamagata Y, Nishino K, Takaki E, Sato S, Maekawa R, Nakai A, et al. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells. PLoS One. 2014;9(1):e83612.

    PubMed  PubMed Central  Google Scholar 

  49. Dyson MT, Roqueiro D, Monsivais D, Ercan CM, Pavone ME, Brooks DC, et al. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis. PLoS Genet. 2014;10(3):e1004158.

    PubMed  PubMed Central  Google Scholar 

  50. Saare M, et al. The influence of menstrual cycle and endometriosis on endometrial methylome. Clin Epigenetics. 2016;8:2.

    PubMed  PubMed Central  Google Scholar 

  51. Rahmioglu N, Drong AW, Lockstone H, Tapmeier T, Hellner K, Saare M, et al. Variability of genome-wide DNA methylation and mRNA expression profiles in reproductive and endocrine disease related tissues. Epigenetics. 2017;12(10):897–908.

    PubMed  PubMed Central  Google Scholar 

  52. Fries GF. The PBB episode in Michigan: an overall appraisal. Crit Rev Toxicol. 1985;16(2):105–56.

    CAS  PubMed  Google Scholar 

  53. Kay K. Polybrominated biphenyls (PBB) environmental contamination in Michigan, 1973-1976. Environ Res. 1977;13(1):74–93.

    CAS  PubMed  Google Scholar 

  54. IARC, W.G.o.t.E.o.C.R.t.H., Polychlorinated biphenyls and polybrominated biphenyls: IARC monographs on the evaluation of carcinogenic risks to humans. 2013. 107(Lyon, France).

  55. Marder ME, Panuwet P, Hunter RE, Ryan PB, Marcus M, Barr DB. Quantification of polybrominated and polychlorinated biphenyls in human matrices by isotope-dilution gas chromatography-tandem mass spectrometry. J Anal Toxicol. 2016;40(7):511–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Houseman EA, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.

    PubMed  PubMed Central  Google Scholar 

  57. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012;7(7):e41361.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–8.

    CAS  PubMed  Google Scholar 

  59. Storey JD. The positive false discovery rate: a Bayesian interpretation and the q -value. Ann Stat. 2003;31(6):2013–35.

    Google Scholar 

  60. Houshdaran S, et al. Aberrant endometrial DNA methylome and associated gene expression in women with endometriosis. Biol Reprod. 2016;95(5):93.

    PubMed  PubMed Central  Google Scholar 

  61. Hsiao KY, Wu MH, Tsai SJ. Epigenetic regulation of the pathological process in endometriosis. Reprod Med Biol. 2017;16(4):314–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Borghese B, Barbaux S, Mondon F, Santulli P, Pierre G, Vinci G, et al. Research resource: genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol Endocrinol. 2010;24(9):1872–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kobayashi H, Higashiura Y, Koike N, Akasaka J, Uekuri C, Iwai K, et al. Genes downregulated in endometriosis are located near the known imprinting genes. Reprod Sci. 2014;21(8):966–72.

    PubMed  PubMed Central  Google Scholar 

  64. Koike N, Higashiura Y, Akasaka J, Uekuri C, Ito F, Kobayashi H. Epigenetic dysregulation of endometriosis susceptibility genes (review). Mol Med Rep. 2015;12(2):1611–6.

    CAS  PubMed  Google Scholar 

  65. Pisarska MD, et al. Genetics and epigenetics of infertility and treatments on outcomes. J Clin Endocrinol Metab. 2018.

  66. Xiong Y, Wang J, Liu L, Chen X, Xu H, Li TC, et al. Effects of high progesterone level on the day of human chorionic gonadotrophin administration in in vitro fertilization cycles on epigenetic modification of endometrium in the peri-implantation period. Fertil Steril. 2017;108(2):269–76 e1.

    CAS  PubMed  Google Scholar 

  67. Kobayashi H, et al. Fetal programming theory: implication for the understanding of endometriosis. Hum Immunol. 2014;75(3):208–17.

    CAS  PubMed  Google Scholar 

  68. Wang D, et al. DNA hypomethylation of the COX-2 gene promoter is associated with up-regulation of its mRNA expression in eutopic endometrium of endometriosis. Eur J Med Res. 2012;17:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril. 2007;87(1):24–32.

    CAS  PubMed  Google Scholar 

  70. Meyer JL, Zimbardi D, Podgaec S, Amorim RL, Abrão MS, Rainho CA. DNA methylation patterns of steroid receptor genes ESR1, ESR2 and PGR in deep endometriosis compromising the rectum. Int J Mol Med. 2014;33(4):897–904.

    CAS  PubMed  Google Scholar 

  71. Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo SW. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol. 2005;193(2):371–80.

    CAS  PubMed  Google Scholar 

  72. Xue Q, Lin Z, Cheng YH, Huang CC, Marsh E, Yin P, et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007;77(4):681–7.

    CAS  PubMed  Google Scholar 

  73. Xue Q, Lin Z, Yin P, Milad MP, Cheng YH, Confino E, et al. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J Clin Endocrinol Metab. 2007;92(8):3261–7.

    CAS  PubMed  Google Scholar 

  74. Uno S, Zembutsu H, Hirasawa A, Takahashi A, Kubo M, Akahane T, et al. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet. 2010;42(8):707–10.

    CAS  PubMed  Google Scholar 

  75. Vainio S, Heikkilä M, Kispert A, Chin N, McMahon A. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397(6718):405–9.

    CAS  PubMed  Google Scholar 

  76. Nyholt DR, Low SK, Anderson CA, Painter JN, Uno S, Morris AP, et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat Genet. 2012;44(12):1355–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pellegrini C, Gori I, Achtari C, Hornung D, Chardonnens E, Wunder D, et al. The expression of estrogen receptors as well as GREB1, c-MYC, and cyclin D1, estrogen-regulated genes implicated in proliferation, is increased in peritoneal endometriosis. Fertil Steril. 2012;98(5):1200–8.

    CAS  PubMed  Google Scholar 

  78. Pagliardini L, Gentilini D, Sanchez AM, Candiani M, Viganò P, di Blasio AM. Replication and meta-analysis of previous genome-wide association studies confirm vezatin as the locus with the strongest evidence for association with endometriosis. Hum Reprod. 2015;30(4):987–93.

    CAS  PubMed  Google Scholar 

  79. Young SL, Lessey BA. Progesterone function in human endometrium: clinical perspectives. Semin Reprod Med. 2010;28(1):5–16.

    CAS  PubMed  Google Scholar 

  80. Labarta E, Martínez-Conejero JA, Alamá P, Horcajadas JA, Pellicer A, Simón C, et al. Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011;26(7):1813–25.

    CAS  PubMed  Google Scholar 

  81. Kao LC, Germeyer A, Tulac S, Lobo S, Yang JP, Taylor RN, et al. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology. 2003;144(7):2870–81.

    CAS  PubMed  Google Scholar 

  82. Wu Y, et al. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics. 2006;1(2):106–11.

    PubMed  Google Scholar 

  83. Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148(8):3814–26.

    CAS  PubMed  Google Scholar 

  84. Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17.

    CAS  PubMed  Google Scholar 

  85. Bauer M. Cell-type-specific disturbance of DNA methylation pattern: a chance to get more benefit from and to minimize cohorts for epigenome-wide association studies. Int J Epidemiol. 2018;47:917–27.

    PubMed  Google Scholar 

Download references

Funding

This project was financed by the following grants: National Institutes of Environmental Health Sciences (5RO1ES024790, 5RO1ES025775, R24ES028528, 5P30ES019776) and the National Institute of General Medicine Sciences (T32GM008490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alica K. Smith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 66099 kb)

ESM 2

(XLSX 29 kb)

ESM 3

(XLSX 75385 kb)

ESM 4

(XLSX 71300 kb)

ESM 5

(XLSX 72521 kb)

ESM 6

(XLSX 3874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerkowicz, S.A., Curtis, S.W., Knight, A.K. et al. Endometriosis, endocrine disrupters, and epigenetics: an investigation into the complex interplay in women with polybrominated biphenyl exposure and endometriosis. J Assist Reprod Genet 37, 427–436 (2020). https://doi.org/10.1007/s10815-020-01695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01695-9

Keywords

Navigation