Skip to main content

What human sperm RNA-Seq tells us about the microbiome

Abstract

Purpose

The study was designed to assess the capacity of human sperm RNA-seq data to gauge the diversity of the associated microbiome within the ejaculate.

Methods

Semen samples were collected, and semen parameters evaluated at time of collection. Sperm RNA was isolated and subjected to RNA-seq. Microbial composition was determined by aligning sequencing reads not mapped to the human genome to the NCBI RefSeq bacterial, viral and archaeal genomes following RNA-Seq. Analysis of microbial assignments utilized phyloseq and vegan.

Results

Microbial composition within each sample was characterized as a function of microbial associated RNAs. Bacteria known to be associated with the male reproductive tract were present at similar levels in all samples representing 11 genera from four phyla with one exception, an outlier. Shannon diversity index (p < 0.001) and beta diversity (unweighted UniFrac distances, p = 9.99e-4; beta dispersion, p = 0.006) indicated the outlier was significantly different from all other samples. The outlier sample exhibited a dramatic increase in Streptococcus. Multiple testing indicated two operational taxonomic units, S. agalactiae and S. dysgalactiae (p = 0.009), were present.

Conclusion

These results provide a first look at the microbiome as a component of human sperm RNA sequencing that has sufficient sensitivity to identify contamination or potential pathogenic bacterial colonization at least among the known contributors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BH:

Benjamini-Hochberg

CCLE:

Cancer Cell Line Encyclopedia

hNGS:

Human sperm RNA-seq

ICSI:

Intracytoplasmic sperm injection

IUI:

Intrauterine Insemination

IVF:

In vitro fertilization

LB:

Live birth

LB + NLB:

Combined LB and NLB group samples excluding the outlier

MS2:

Escherichia virus MS2

NGS:

Next-generation sequencing

NLB:

No live birth

NMDS:

Non-metric multidimensional scaling

OTU:

Operational taxonomic unit

PERMANOVA:

Permutational multivariate analysis of variance test

phiX:

Enterobacteria phage phiX174 sensu lato

rDNA:

DNA sequencing of rRNA

rRNA:

Ribosomal RNA

Seq:

16S rDNA sequencing by NGS

TCGA:

The Cancer Genome Atlas

TIC:

Timed intercourse

TII:

Transcript Integrity Index

WHO:

World Health Organization

References

  1. 1.

    Kiessling AA, Desmarais BM, Yin H-Z, Loverde J, Eyre RC. Detection and identification of bacterial DNA in semen. Fertil Steril. 2008;90(5):1744–56. https://doi.org/10.1016/j.fertnstert.2007.08.083.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Franasiak JM, Scott RT. Reproductive tract microbiome in assisted reproductive technologies. Fertil Steril. 2015;104(6):1364–71. https://doi.org/10.1016/j.fertnstert.2015.10.012.

    Article  PubMed  Google Scholar 

  3. 3.

    Franasiak JM, Scott RT. Introduction: microbiome in human reproduction. Fertil Steril. 2015;104(6):1341–3. https://doi.org/10.1016/j.fertnstert.2015.10.021.

    Article  PubMed  Google Scholar 

  4. 4.

    Mändar R. Microbiota of male genital tract: impact on the health of man and his partner. Pharmacol Res. 2013;69(1):32–41. https://doi.org/10.1016/j.phrs.2012.10.019.

    Article  PubMed  Google Scholar 

  5. 5.

    Qing L, Song Q-X, Feng J-L, Li H-Y, Liu G, Jiang H-H. Prevalence of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium and Ureaplasma urealyticum infections using a novel isothermal simultaneous RNA amplification testing method in infertile males. Ann Clin Microbiol Antimicrob. 2017;16(1):45. https://doi.org/10.1186/s12941-017-0220-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Moretti E, Capitani S, Figura N, Pammolli A, Federico MG, Giannerini V, et al. The presence of bacteria species in semen and sperm quality. J Assist Reprod Genet. 2009;26(1):47–56. https://doi.org/10.1007/s10815-008-9283-5.

    Article  PubMed  Google Scholar 

  7. 7.

    Clarridge JE 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17(4):840–62. https://doi.org/10.1128/CMR.17.4.840-862.2004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Chen M, Cai L-Y, Kanno N, Kato T, Lu J, Jin F, et al. Detection of human herpesviruses (HHVs) in semen of human male infertile patients. J Reprod Dev. 2013;59(5):457–62. https://doi.org/10.1262/jrd.2013-023.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cordeiro CN, Bano R, Washington Cross CI, Segars JH. Zika virus and assisted reproduction. Curr Opin Obstet Gynecol. 2017;29(3):175–9. https://doi.org/10.1097/GCO.0000000000000366.

    Article  PubMed  Google Scholar 

  10. 10.

    Lai YM, Yang F-P, Pao CC. Human papillomavirus deoxyribonucleic acid and ribonucleic acid in seminal plasma and sperm cells**Supported by research grant NSC83-0412-B182-001 from National Science Council of Republic of China and by medical research grant CMRP-343 from Chang Gung College of Medicine and Technology and Memorial Hospital, Taipei, Taiwan, Republic of China, both awarded to C.C.P. Fertil Steril. 1996;65(5):1026–30. https://doi.org/10.1016/S0015-0282(16)58281-8.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Diemer T, Huwe P, Ludwig M, Schroeder-Printzen I, Michelmann HW, Schiefer HG, et al. Influence of autogenous leucocytes and Escherichia coli on sperm motility parameters in vitro. Andrologia. 2003;35(2):100–5. https://doi.org/10.1046/j.1439-0272.2003.00523.x.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hou D, Zhou X, Zhong X, Settles ML, Herring J, Wang L, et al. Microbiota of the seminal fluid from healthy and infertile men. Fertil Steril. 2013;100(5):1261–9.e3. https://doi.org/10.1016/j.fertnstert.2013.07.1991.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Weidner W, Jantos C, Schiefer HG, Haidl G, Friedrich HJ. Semen parameters in men with and without proven chronic prostatitis. Arch Androl. 1991;26(3):173–83. https://doi.org/10.3109/01485019108987640.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Vetrosky D, White GL Jr. Prostatitis. Lippincotts Prim Care Pract. 1997;1(4):437–41.

    CAS  PubMed  Google Scholar 

  15. 15.

    Weng S-L, Chiu C-M, Lin F-M, Huang W-C, Liang C, Yang T, et al. Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLoS One. 2014;9(10):e110152-e. https://doi.org/10.1371/journal.pone.0110152.

    CAS  Article  Google Scholar 

  16. 16.

    Jodar M, Sendler E, Moskovtsev SI, Librach CL, Goodrich R, Swanson S, et al. Absence of sperm RNA elements correlates with idiopathic male infertility. Sci Transl Med. 2015;7(295):295re6. https://doi.org/10.1126/scitranslmed.aab1287.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Goodrich R, Johnson G, Krawetz SA. The preparation of human spermatozoal RNA for clinical analysis. Arch Androl. 2007;53(3):161–7. https://doi.org/10.1080/01485010701216526.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Goodrich RJ, Anton E, Krawetz SA. Isolating mRNA and small noncoding RNAs from human sperm. Methods Mol Biol. 2013;927:385–96. https://doi.org/10.1007/978-1-62703-038-0_33.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Mao S, Goodrich RJ, Hauser R, Schrader SM, Chen Z, Krawetz SA. Evaluation of the effectiveness of semen storage and sperm purification methods for spermatozoa transcript profiling. Syst Biol Reprod Med. 2013;59(5):287–95. https://doi.org/10.3109/19396368.2013.817626.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Estill MS, Hauser R, Krawetz SA. RNA element discovery from germ cell to blastocyst. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky1223.

    Article  Google Scholar 

  21. 21.

    Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317 https://www.nature.com/articles/nmeth.3317#supplementary-information.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Team RC. R: a language and environment for statistical computing. 2013.

  24. 24.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shen W, Xiong J. TaxonKit: a cross-platform and efficient NCBI taxonomy toolkit. bioRxivorg. 2019;513523. https://doi.org/10.1101/513523.

  26. 26.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2019.

  27. 27.

    Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome. 2017;5(1):52. https://doi.org/10.1186/s40168-017-0267-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Barton H, Taylor N, Lubbers B, Pemberton A. DNA extraction from low-biomass carbonate rock: an improved method with reduced contamination and the low-biomass contaminant database. J Microbiol Methods. 2006;66(1):21–31.

    CAS  Article  Google Scholar 

  29. 29.

    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12(1):87. https://doi.org/10.1186/s12915-014-0087-z.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45. https://doi.org/10.1093/humupd/dmp048.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Simon LM, Karg S, Westermann AJ, Engel M, Elbehery AHA, Hense B, et al. MetaMap: an atlas of metatranscriptomic reads in human disease-related RNA-seq data. Gigascience. 2018;7(6):giy070. https://doi.org/10.1093/gigascience/giy070.

    CAS  Article  PubMed Central  Google Scholar 

  32. 32.

    Strong MJ, Xu G, Morici L, Splinter Bon-Durant S, Baddoo M, Lin Z, et al. Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples. PLoS Pathog. 2014;10(11):e1004437. https://doi.org/10.1371/journal.ppat.1004437.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Tae H, Karunasena E, Bavarva JH, McIver LJ, Garner HR. Large scale comparison of non-human sequences in human sequencing data. Genomics. 2014;104(6 Pt B):453–8. https://doi.org/10.1016/j.ygeno.2014.08.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Uphoff CC, Pommerenke C, Denkmann SA, Drexler HG. Screening human cell lines for viral infections applying RNA-Seq data analysis. PLoS One. 2019;14(1):e0210404-e. https://doi.org/10.1371/journal.pone.0210404.

    CAS  Article  Google Scholar 

  35. 35.

    Anantha RV, Kasper KJ, Patterson KG, Zeppa JJ, Delport J, McCormick JK. Fournier’s gangrene of the penis caused by Streptococcus dysgalactiae subspecies equisimilis: case report and incidence study in a tertiary-care hospital. BMC Infect Dis. 2013;13(1):381. https://doi.org/10.1186/1471-2334-13-381.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Takakura S, Gibo K, Takayama Y, Shiiki S, Narita M. Clinical characteristics of Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus dysgalactiae subsp. equisimilis bacteremia in adults: a 15-year retrospective study at a major teaching hospital in Okinawa, Japan. Open Forum Infect Dis. 2017;4(suppl_1):S559-S. https://doi.org/10.1093/ofid/ofx163.1457.

    Article  Google Scholar 

  37. 37.

    Bliss SJ, Pearlman MD, Marrs CF, Tallman P, Manning SD, Foxman B, et al. Group B Streptococcus colonization in male and nonpregnant female university students: a cross-sectional prevalence study. Clin Infect Dis. 2002;34(2):184–90. https://doi.org/10.1086/338258.

    Article  PubMed  Google Scholar 

  38. 38.

    Foxman B, Gillespie BW, Manning SD, Marrs CF. Risk factors for group B streptococcal colonization: potential for different transmission systems by capsular type. Ann Epidemiol. 2007;17(11):854–62. https://doi.org/10.1016/j.annepidem.2007.05.014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    D'Urzo N, Martinelli M, Pezzicoli A, De Cesare V, Pinto V, Margarit I, et al. Acidic pH strongly enhances in vitro biofilm formation by a subset of Hypervirulent ST-17 Streptococcus agalactiae strains. Appl Environ Microbiol. 2014;80(7):2176–85. https://doi.org/10.1128/aem.03627-13.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Furfaro LL, Chang BJ, Payne MS. Perinatal Streptococcus agalactiae epidemiology and surveillance targets. Clin Microbiol Rev. 2018;31(4):e00049–18. https://doi.org/10.1128/cmr.00049-18.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Parks T, Barrett L, Jones N. Invasive streptococcal disease: a review for clinicians. Br Med Bull. 2015;115(1):77–89. https://doi.org/10.1093/bmb/ldv027.

    Article  PubMed  Google Scholar 

  42. 42.

    Parida R, Samanta L. In silico analysis of candidate proteins sharing homology with Streptococcus agalactiae proteins and their role in male infertility. Syst Biol Reprod Med. 2017;63(1):15–28. https://doi.org/10.1080/19396368.2016.1243741.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Rosini R, Margarit I. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol. 2015;5(6). https://doi.org/10.3389/fcimb.2015.00006.

Download references

Acknowledgments

The use of samples from the Eunice Kennedy Silver National Institute of Child Health and Human Development (Assessment of Multiple Intrauterine Gestations from Ovarian Stimulation (AMIGOS) study are gratefully acknowledged. Support from the Postdoctoral Recruiting Fellowship from Wayne State University to GMS and from the Charlotte B. Failing Professorship to SAK and the Wayne State University OVPR  Grants Boost award to SAK is gratefully acknowledged. The authors would like to thank Dr. Kevin Theis, Department of Biochemistry, Microbiology and Immunology and Obstetrics and Gynecology, Wayne State University School of Medicine for his thoughtful review of the manuscript. Merck KGaA Darmstadt, Germany reviewed the manuscript for medical accuracy only before journal submission. The authors are fully responsible for the content of this manuscript, and the views and opinions described in the publication reflect solely those of the authors. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NICHD or NIH.

Funding

This study was funded by a 2016 Grant for Fertility Innovation (25RJY1) from Merck KGaA Darmstadt, Germany and a National Institute of Health (NIH)/National Institute of Environmental Health Sciences (NIEHS) Grant (R01-ES028298).

Author information

Affiliations

Authors

Contributions

SAK and GMS were responsible for study design. Sample acquisition was by SM, CL, and JRP. RNA isolation and sequencing were performed by RG. Sequence alignment, analysis, and manuscript preparation was performed by GMS. All the authors contributed to the editing of the manuscript.

Corresponding author

Correspondence to Stephen A. Krawetz.

Ethics declarations

Conflict of interest

Stephen Krawetz has received grants from EMD Serono and GFI Fertility Innovation. Stephen Krawetz reports honoraria from Taylor and Francis and KINBRE.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1
figure5

Estimated sample richness (alpha diversity) by sequencing run; Next-seq 500 and Hi-seq 4000. The observed microbial richness (Observed) and Shannon diversity index (Shannon) of the sequencing runs are significantly different (p-value < 0.001). Group mean and 95% confidence intervals are reported. (PNG 633 kb)

High resolution image (TIF 555 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swanson, G.M., Moskovtsev, S., Librach, C. et al. What human sperm RNA-Seq tells us about the microbiome. J Assist Reprod Genet 37, 359–368 (2020). https://doi.org/10.1007/s10815-019-01672-x

Download citation

Keywords

  • Human sperm RNA-seq
  • Microbiome
  • Bacterial identification
  • Microbial RNA