Skip to main content

Advertisement

Log in

A novel “embryo-endometrial” adhesion model can potentially predict “receptive” or “non-receptive” endometrium

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objective

To establish a model of human implantation that responds to hormonal stimuli and can differentiate between endometrium from fertile women and those with idiopathic infertility.

Design

A trophoblast stem cell (trophectodermal) line (TSC; derived from human pre-implantation embryo) was used to form trophectodermal spheroids (TS). TS attachment to monolayers of endometrial epithelial cell lines or primary endometrial epithelial cells (pHEECs) was determined.

Setting

Independent Medical Research Institute with close clinical linkages

Interventions

Spheroid attachment and outgrowth was determined with added hormones (estradiol 17β (E), E + medroxyprogesterone acetate (MPA) or E + MPA + human chorionic gonadotropin (hCG)). Spheroid attachment to E/MPA treated pHEEC prepared from fertile women or those with idiopathic infertility tested.

Main outcome measure

Firmly attached spheroids counted after co-culture for 6 h. Outgrowth was determined by quantitation of area covered by spheroid after firm adhesion.

Results

Functional adhesion of TS to two endometrial epithelial cell lines, Ishikawa and ECC-1 cells, was hormonally responsive, with adhesion/outgrowth increased by E/MPA (ECC-1; p < 0.01, Ishikawa; p < 0.01) and E/MPA/hCG (ECC-1; p < 0.001, Ishikawa p < 0.01) versus E alone. The same pattern of hormone responsiveness was observed in pHEEC obtained from fertile women (E vs, E/MPA; p < 0.01, E vs. E/MPA/hCG; p < 0.001). TS adhered to 85% of pHEEC obtained from fertile women (11/13) and 11% of pHEEC obtained from women with unexplained infertility (2/18, p < 0.001).

Conclusion

This new model of “embryo” implantation largely discriminates between endometrial epithelial cells obtained from fertile vs. infertile women based on adhesion; this holds potential as an in vitro “diagnostic” tool of endometrial infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature. 2017;550:67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Macklon NS, Geraedts JP, Fauser BC. Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum Reprod Update. 2002;8:333–43.

    Article  CAS  PubMed  Google Scholar 

  3. Harton GL, Munne S, Surrey M, Grifo J, Kaplan B, McCulloh DH, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100:1695–703.

    Article  CAS  PubMed  Google Scholar 

  4. Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82:235–45.

    Article  CAS  PubMed  Google Scholar 

  5. Weimar CH, Post Uiterweer ED, Teklenburg G, Heijnen CJ, Macklon NS. In-vitro model systems for the study of human embryo-endometrium interactions. Reprod BioMed Online. 2013;27:461–76.

    Article  CAS  PubMed  Google Scholar 

  6. Ho H, Singh H, Aljofan M, Nie G. A high-throughput in vitro model of human embryo attachment. Fertil Steril. 2012;97:974–8.

    Article  PubMed  Google Scholar 

  7. Boggavarapu NR, Berger C, von Grothusen C, Menezes J, Gemzell-Danielsson K, Lalitkumar PG. Effects of low doses of mifepristone on human embryo implantation process in a three-dimensional human endometrial in vitro co-culture system. Contraception. 2016;94:143–51.

    Article  CAS  PubMed  Google Scholar 

  8. Galan A, O’Connor JE, Valbuena D, Herrer R, Remohi J, Pampfer S, et al. The human blastocyst regulates endometrial epithelial apoptosis in embryonic adhesion. Biol Reprod. 2000;63:430–9.

    Article  CAS  PubMed  Google Scholar 

  9. Lalitkumar PG, Lalitkumar S, Meng CX, Stavreus-Evers A, Hambiliki F, Bentin-Ley U, et al. Mifepristone, but not levonorgestrel, inhibits human blastocyst attachment to an in vitro endometrial three-dimensional cell culture model. Hum Reprod. 2007;22:3031–7.

    Article  CAS  PubMed  Google Scholar 

  10. Lalitkumar S, Boggavarapu NR, Menezes J, Dimitriadis E, Zhang JG, Nicola NA, et al. Polyethylene glycated leukemia inhibitory factor antagonist inhibits human blastocyst implantation and triggers apoptosis by down-regulating embryonic AKT. Fertil Steril. 2013;100:1160–9.

    Article  CAS  PubMed  Google Scholar 

  11. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH. Self-organization of the in vitro attached human embryo. Nature. 2016;533:251–4.

    Article  CAS  PubMed  Google Scholar 

  12. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, et al. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18:700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kirby DR. The development of mouse blastocysts transplanted to the scrotal and cryptorchid testis. J Anat. 1963;97:119–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirby DR. Development of the mouse 9lastocyst transplanted to the spleen. J Reprod Fertil. 1963;5:1–12.

    Article  CAS  PubMed  Google Scholar 

  15. Runner MN. Development of mouse eggs in the anterior chamber of the eye. Anat Rec. 1947;98:1–17.

    Article  CAS  PubMed  Google Scholar 

  16. Panelli DM, Phillips CH, Brady PC. Incidence, diagnosis and management of tubal and nontubal ectopic pregnancies: a review. Fertil Res Pract. 2015;1:15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Valdes CT, Schutt A, Simon C. Implantation failure of endometrial origin: it is not pathology, but our failure to synchronize the developing embryo with a receptive endometrium. Fertil Steril. 2017;108:15–8.

    Article  PubMed  Google Scholar 

  18. Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod. 2010;16:135–52.

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Sun X, Dey SK. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Rep. 2015;11:358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7:185–99.

    Article  PubMed  CAS  Google Scholar 

  21. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359:76–9.

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira JB, Vagnini LD, Petersen CG, Renzi A, Oliveira-Pelegrin GR, Mauri AL, et al. Association between leukaemia inhibitory factor gene polymorphism and pregnancy outcomes after assisted reproduction techniques. Reprod BioMed Online. 2016;32:66–78.

    Article  CAS  PubMed  Google Scholar 

  23. Paiva P, Menkhorst E, Salamonsen L, Dimitriadis E. Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev. 2009;20:319–28.

    Article  PubMed  Google Scholar 

  24. Brinsden PR, Alam V, de Moustier B, Engrand P. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil Steril. 2009;91:1445–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lee YL, Fong SW, Chen AC, Li T, Yue C, Lee CL, et al. Establishment of a novel human embryonic stem cell-derived trophoblastic spheroid implantation model. Hum Reprod. 2015;30:2614–26.

    Article  CAS  PubMed  Google Scholar 

  26. Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J, Vivie J, et al. Blastocyst-like structures generated solely from stem cells. Nature. 2018;557:106–11.

    Article  CAS  PubMed  Google Scholar 

  27. Zdravkovic T, Nazor KL, Larocque N, Gormley M, Donne M, Hunkapillar N, et al. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification. Development. 2015;142:4010–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aghajanova L, Shen S, Rojas AM, Fisher SJ, Irwin JC, Giudice LC. Comparative transcriptome analysis of human trophectoderm and embryonic stem cell-derived trophoblasts reveal key participants in early implantation. Biol Reprod. 2012;86:1–21.

    Article  PubMed  CAS  Google Scholar 

  29. Paiva P, Hannan NJ, Hincks C, Meehan KL, Pruysers E, Dimitriadis E, et al. Human chorionic gonadotrophin regulates FGF2 and other cytokines produced by human endometrial epithelial cells, providing a mechanism for enhancing endometrial receptivity. Hum Reprod. 2011;26:1153–62.

    Article  CAS  PubMed  Google Scholar 

  30. Bilandzic M, Stenvers KL. Assessment of ovarian cancer spheroid attachment and invasion of mesothelial cells in real time. J Vis Exp. 2014;(87). https://doi.org/10.3791/51655

  31. Nepomnaschy PA, Weinberg CR, Wilcox AJ, Baird DD. Urinary hCG patterns during the week following implantation. Hum Reprod. 2008;23:271–7.

    Article  CAS  PubMed  Google Scholar 

  32. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340:1796–9.

    Article  CAS  PubMed  Google Scholar 

  33. Thie M, Harrach-Ruprecht B, Sauer H, Fuchs P, Albers A, Denker HW. Cell adhesion to the apical pole of epithelium: a function of cell polarity. Eur J Cell Biol. 1995;66:180–91.

    CAS  PubMed  Google Scholar 

  34. Martin JC, Jasper MJ, Valbuena D, Meseguer M, Remohi J, Pellicer A, et al. Increased adhesiveness in cultured endometrial-derived cells is related to the absence of moesin expression. Biol Reprod. 2000;63:1370–6.

    Article  CAS  PubMed  Google Scholar 

  35. Thie M, Denker HW. In vitro studies on endometrial adhesiveness for trophoblast: cellular dynamics in uterine epithelial cells. Cells Tissues Organs. 2002;172:237–52.

    Article  PubMed  Google Scholar 

  36. Whitby S, Salamonsen LA, Evans J. The endometrial polarity paradox: differential regulation of polarity within secretory-phase human endometrium. Endocrinology. 2018;159:506–18.

    Article  CAS  PubMed  Google Scholar 

  37. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673–9.

    Article  CAS  PubMed  Google Scholar 

  38. Yedwab GA, Paz G, Homonnai TZ, David MP, Kraicer PF. The temperature, pH, and partial pressure of oxygen in the cervix and uterus of women and uterus of rats during the cycle. Fertil Steril. 1976;27:304–9.

    Article  CAS  PubMed  Google Scholar 

  39. Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012;(7):CD008950. https://doi.org/10.1002/14651858.CD008950.pub2

  40. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18:502–19.

    CAS  PubMed  Google Scholar 

  41. Evans J, Catalano RD, Brown P, Sherwin R, Critchley HO, Fazleabas AT, et al. Prokineticin 1 mediates fetal-maternal dialogue regulating endometrial leukemia inhibitory factor. FASEB J. 2009;23:2165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fazleabas AT, Donnelly KM, Srinivasan S, Fortman JD, Miller JB. Modulation of the baboon (Papio anubis) uterine endometrium by chorionic gonadotrophin during the period of uterine receptivity. Proc Natl Acad Sci U S A. 1999;96:2543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Licht P, Fluhr H, Neuwinger J, Wallwiener D, Wildt L. Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol Cell Endocrinol. 2007;269:85–92.

    Article  CAS  PubMed  Google Scholar 

  44. Licht P, Russu V, Lehmeyer S, Moll J, Siebzehnrubl E, Wildt L. Intrauterine microdialysis reveals cycle-dependent regulation of endometrial insulin-like growth factor binding protein-1 secretion by human chorionic gonadotropin. Fertil Steril. 2002;78:252–8.

    Article  PubMed  Google Scholar 

  45. Sherwin JR, Sharkey AM, Cameo P, Mavrogianis PM, Catalano RD, Edassery S, et al. Identification of novel genes regulated by chorionic gonadotropin in baboon endometrium during the window of implantation. Endocrinology. 2007;148:618–26.

    Article  CAS  PubMed  Google Scholar 

  46. Greening DW, Nguyen HP, Evans J, Simpson RJ, Salamonsen LA. Modulating the endometrial epithelial proteome and secretome in preparation for pregnancy: The role of ovarian steroid and pregnancy hormones. J Proteome. 2016;144:99–112.

    Article  CAS  Google Scholar 

  47. Harrison SE, Sozen B, Zernicka-Goetz M. In vitro generation of mouse polarized embryo-like structures from embryonic and trophoblast stem cells. Nat Protoc. 2018;(7):1586-1602. https://doi.org/10.1038/s41596-018-0005-x

    Article  CAS  PubMed  Google Scholar 

  48. Macklon NS, Brosens JJ. The human endometrium as a sensor of embryo quality. Biol Reprod. 2014;91:98.

    Article  PubMed  CAS  Google Scholar 

  49. Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95:50–60 60 e51-15.

    Article  CAS  PubMed  Google Scholar 

  50. Fitzgerald HC, Evans J, Johnson N, Infusini G, Webb A, Rombauts LJR, et al. Idiopathic infertility in women is associated with distinct changes in proliferative phase uterine fluid proteins. Biol Reprod. 2018;98:752–64.

    Article  PubMed  Google Scholar 

  51. Fitzgerald HC, Salamonsen LA, Rombauts LJ, Vollenhoven BJ, Edgell TA. The proliferative phase underpins endometrial development: altered cytokine profiles in uterine lavage fluid of women with idiopathic infertility. Cytokine. 2016;88:12–9.

    Article  CAS  PubMed  Google Scholar 

  52. Sebastian-Leon P, Garrido N, Remohi J, Pellicer A, Diaz-Gimeno P. Asynchronous and pathological windows of implantation: two causes of recurrent implantation failure. Hum Reprod. 2018;33:626–35.

    Article  CAS  PubMed  Google Scholar 

  53. Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol. 2017;19:568–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development. 2017;144:1775–86.

    CAS  PubMed  Google Scholar 

  55. Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B, Bui B, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol. 2019;21:1041–51.

    Article  CAS  PubMed  Google Scholar 

  56. Gardner DK. Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion? Bioessays. 2015;37:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shahbazi MN, Scialdone A, Skorupska N, Weberling A, Recher G, Zhu M, et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature. 2017;552:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen X, Jiang L, Wang CC, Huang J, Li TC. Hypoxia inducible factor and microvessels in peri-implantation endometrium of women with recurrent miscarriage. Fertil Steril. 2016;105:1496–502 e1494.

    Article  CAS  PubMed  Google Scholar 

  59. Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One. 2010;5:e10287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank the patients who gave their consent for this study and Sister Judi Hocking for collecting human tissue samples. We thank Prof Susan Fisher for her kind gift of TSC trophectodermal cells.

Funding

This work was supported by National Health and Medical Research Council of Australia project #1139489 and #1141946 and the Victorian Governments Operational Infrastructure funding. JE supported by a fielding foundation fellowship, Society for Reproductive Investigation Bridge grant, and NHMRC project grant. MB supported by the Ovarian Cancer Research Foundation (OCRF), Fielding Foundation Innovation Award, and the CASS foundation. LAS supported by the Hudson Institute of Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

JE conceived the project, performed experimental work, performed data analysis, and wrote the manuscript. KJW and SK performed experimental work. MB helped with model development. LAS helped develop project, wrote, and edited manuscript and provided critical insight.

Corresponding author

Correspondence to Jemma Evans.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, J., Walker, K.J., Bilandzic, M. et al. A novel “embryo-endometrial” adhesion model can potentially predict “receptive” or “non-receptive” endometrium. J Assist Reprod Genet 37, 5–16 (2020). https://doi.org/10.1007/s10815-019-01629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01629-0

Keywords

Navigation