Skip to main content

Advertisement

Log in

Transcriptome sequencing of endometrium revealed alterations in mRNAs and lncRNAs after ovarian stimulation

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Research question

Using RNA-sequencing analysis, we investigated the relationship between ovarian stimulation and endometrial transcriptome profiles during the window of implantation (WOI) to identify candidate predictive factors for the WOI and to optimize timing for embryo transfer.

Methods

Twelve women with normal basal hormone levels and regular ovulation were randomly assigned into three groups based on sampling time: late-proliferate phase (P group), and receptive phase in natural cycles (LH+7, N group) and stimulated cycles (hCG+7, S group). Transcriptome profiles of mRNAs and long non-coding RNAs (lncRNAs) were then compared among the three groups. Validation was performed using real-time qPCR.

Results

Comparison of transcriptome profiles between the natural and stimulated endometrium revealed 173 differentially expressed genes (DEGs), with a > 2-fold change (FC) and p < 0.05, under the influence of supraphysiological estradiol (E2) induced by ovarian stimulation. By clustering and KEGG pathway analysis, molecules and pathways associated with endometrial receptivity were identified. Of the 39 DEGs common to the three groups, eight genes were validated using real-time PCR. ESR1, MMP10, and HPSE were previously reported to be associated with endometrial receptivity. In addition, three novel genes (IL13RA2, ZCCHC12, SRARP) and two lncRNAs (LINC01060, LINC01104) were new potential endometrial receptivity-related markers.

Conclusion

Using mRNA and lncRNA sequencing, we found that supraphysiological E2 levels from ovarian stimulation had a marked impact upon endometrial transcriptome profiles and may result in a shift of the WOI. The precise mechanisms underlying the supraphysiological hormone-induced shift of the WOI require further research.

Registration number

ChiCTR180001453

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, et al. Physiological and molecular determinants of embryo implantation. Mol Asp Med. 2014;34:939–80.

    Google Scholar 

  2. Norwitz ER, Schust DJ, Fisher JS. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.

    CAS  PubMed  Google Scholar 

  3. Rachel SMD. The receptivity of the endometrium to implementation. Journal of Obstetrics & Gynaecology of the British Empire. 2010;69(1):107–9.

    Google Scholar 

  4. Paulson RJ. Hormonal induction of endometrial receptivity. Fertil Steril. Elsevier Ltd; 2011;96:530–5. https://doi.org/10.1016/j.fertnstert.2011.07.1097

    CAS  PubMed  Google Scholar 

  5. Macklon NS, Geraedts JPM, Fauser BCJM. Conception to ongoing pregnancy: The “black box” of early pregnancy loss. Hum Reprod Update. 2002;8:333–43.

    CAS  PubMed  Google Scholar 

  6. Kumar P, Sharma A. Understanding implantation window, a crucial phenomenon. J Hum Reprod Sci. 2012;5:2. Available from: https://www.jhrsonline.org/text.asp?2012/5/1/2/97777 .

    PubMed  PubMed Central  Google Scholar 

  7. Pellicer A, Valbuena D, Cano F, Remohi J, Simon C. Lower implantation rates in high responders: Evidence for an altered endocrine milieu during the preimplantation period. Fertil Steril. 1996;65:1190–5.

    CAS  PubMed  Google Scholar 

  8. Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, et al. Fresh versus frozen embryo transfer: Backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;20:808–21.

    CAS  PubMed  Google Scholar 

  9. Ozkaya E, Kutlu T, Yayla CA, et al. Area under the curve of temporal estrogen and progesterone measurements during assisted reproductive technology: Which hormone is the main determinant of cycle outcome? Journal of Obstetrics and Gynaecology Research. 2018;44(2):263–9.

    CAS  PubMed  Google Scholar 

  10. Basir GS, Wai-sum O, Ng EHY, Ho PC. Morphometric analysis of peri-implantation endometrium in patients having excessively high oestradiol concentrations after ovarian stimulation. Hum Reprod. 2001;16:435–40.

    CAS  PubMed  Google Scholar 

  11. Bourgain C, Devroey P. The endometrium in stimulated cycles for IVF. Hum Reprod Update. 2003;9:515–22.

    PubMed  Google Scholar 

  12. Nikas G. Endometrial receptivity: Changes in cell-surface morphology. Semin Reprod Med. 2000;18:229–35.

    CAS  PubMed  Google Scholar 

  13. Hsiu JG, Toner JP, Oehninger S, Jones HW. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors. Fertil Steril. 1999;71:1040–7.

    PubMed  Google Scholar 

  14. Valdez-Morales FJ, Domà nguez AG, Vital-Reyes VS, Hinojosa Cruz JC, Chimal-Monroy J, Franco-Murillo Y, et al. Changes in receptivity epithelial cell markers of endometrium after ovarian stimulation treatments: Its role during implantation window. Reprod Health. 2015;12:1–11.

    CAS  Google Scholar 

  15. Boomsma CM, Kavelaars A, Eijkemans MJC, Fauser BCJM, Heijnen CJ, MacKlon NS. Ovarian stimulation for in vitro fertilization alters the intrauterine cytokine, chemokine, and growth factor milieu encountered by the embryo. Fertil Steril. Elsevier Ltd; 2010;94:1764–8. https://doi.org/10.1016/j.fertnstert.2009.10.044

    CAS  PubMed  Google Scholar 

  16. Chen Q j, Sun X x, Li L, Gao X h, Gemzell-Danielsson K, Cheng L n. Effects of ovarian stimulation on endometrial integrin β3 and leukemia inhibitory factor expression in the peri-implantation phase. Fertil Steril. 2008;89:1357–63.

    CAS  PubMed  Google Scholar 

  17. Thomas K, Thomson AJ, Sephton V, Cowan C, Wood S, Vince G, et al. The effect of gonadotrophic stimulation on integrin expression in the endometrium. Hum Reprod 2002;17:63–68. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11756363&retmode=ref&cmd=prlinks%5Cnpapers2://publication/uuid/D41C33EE-8D6D-4CFC-86A6-FAD09F5B5F19 (Accessed: 15 June 2017)

  18. Bourgain C, Ubaldi F, Tavaniotou A, Smitz J, Van Steirteghem AC, Devroey P. Endometrial hormone receptors and proliferation index in the periovulatory phase of stimulated embryo transfer cycles in comparison with natural cycles and relation to clinical pregnancy outcome. Fertil Steril. 2002;78:237–44.

    PubMed  Google Scholar 

  19. Altmae S, Martinez-Conejero JA, Salumets A, Simon C, Horcajadas JA, Stavreus-Evers A. Endometrial gene expression analysis at the time of embryo implantation in women with unexplained infertility. Mol Hum Reprod. 2010;16:178–87. Available from: https://academic.oup.com/molehr/article-lookup/doi/10.1093/molehr/gap102 .

    PubMed  Google Scholar 

  20. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82:791–801. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19864316 .

    CAS  PubMed  Google Scholar 

  21. Ponnampalam AP, Weston GC, Susil B, Rogers PAW. Molecular profiling of human endometrium during the menstrual cycle. Aust N Z J Obstet Gynaecol. 2006;46:154–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16638040 .

    PubMed  Google Scholar 

  22. Ponnampalam AP, Weston GC, Trajstman AC, Susil B, Rogers PAW. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10:879–93.

    CAS  PubMed  Google Scholar 

  23. Horcajadas JA, Riesewijk A, Martin J, Cervero A, Mosselman S, Pellicer A, et al. Global gene expression profiling of human endometrial receptivity. J Reprod Immunol. 2004;63:41–9.

    CAS  PubMed  Google Scholar 

  24. Borthwick JM, Charnock-jones DS, Tom BD, Hull ML, Teirney R, Phillips SC, et al. Determination of the transcript pro ® le of human endometrium. Mol Hum Reprod. 2003;9:19–33. Available from: http://molehr.oxfordjournals.org/content/9/1/19.long .

  25. Riesewijk A, Martin J, van Os R, Horcajadas JA, Polman J, Pellicer A, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod. 2003;9:253–64. Available from: http://molehr.oxfordjournals.org/cgi/content/abstract/9/5/253 .

    CAS  PubMed  Google Scholar 

  26. Kao L, Tulac S, Lobo S, Imani B. Global gene profiling in human endometrium during the window of implantation. … [Internet]. 2002;143:2119–38. Available from: http://press.endocrine.org/doi/abs/10.1210/endo.143.6.8885 (Accessed: 23 October 2016)

    CAS  PubMed  Google Scholar 

  27. Carson DD. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod . 2002;8:871–879. Available from: http://molehr.oxfordjournals.org/content/8/9/871.short

    CAS  PubMed  Google Scholar 

  28. Mirkin S, Nikas G, Hsiu JG, Díaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J Clin Endocrinol Metab. 2004;89:5742–52.

    CAS  PubMed  Google Scholar 

  29. Macklon NS, Van Der Gaast MH, Hamilton A, Fauser BCJM, Giudice LC. The Impact of Ovarian Stimulation With Recombinant. :357–65.

  30. Haouzi D, Assou S, Mahmoud K, Tondeur S, Rème T, Hedon B, et al. Gene expression profile of human endometrial receptivity: Comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24:1436–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Lee KF, Ng EHY, Yeung WSB, Ho PC. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril. Elsevier Ltd; 2008;90:2152–64. https://doi.org/10.1016/j.fertnstert.2007.10.020

    CAS  PubMed  Google Scholar 

  32. Horcajadas JA, Mínguez P, Dopazo J, Esteban FJ, Domínguez F, Giudice LC, et al. Controlled Ovarian Stimulation Induces a Functional Genomic Delay of the Endometrium with Potential Clinical Implications. J Clin Endocrinol Metab. 2008;93:4500–10. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2008-0588 .

    CAS  Google Scholar 

  33. Simon C, Oberye J, Bellver J, Vidal C, Bosch E, Horcajadas JA, et al. Similar endometrial development in oocyte donors treated with either high- or standard-dose GnRH antagonist compared to treatment with a GnRH agonist or in natural cycles. Hum Reprod. 2005;20:3318–27.

    CAS  PubMed  Google Scholar 

  34. Lessey BA, Salamonsen LA, Simón C, Altmäe S, Macklon NS, Campoy C, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2013;20:12–28.

    PubMed  PubMed Central  Google Scholar 

  35. Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99:E2744–53.

    CAS  PubMed  Google Scholar 

  36. Ganesh A, Chauhan N, Das S, Chakravarty B, Chaudhury K. Endometrial receptivity markers in infertile women stimulated with letrozole compared with clomiphene citrate and natural cycles. Syst Biol Reprod Med. 2014;60:105–11.

    CAS  PubMed  Google Scholar 

  37. Miller PB, Parnell BA, Bushnell G, Tallman N, Forstein DA, Higdon HL, et al. Endometrial receptivity defects during IVF cycles with and without letrozole. Hum Reprod. 2012;27:881–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. He Z, Ma Y, Li L, Liu J, Yang H, Chen C, et al. Osteopontin and Integrin αvβ3 Expression during the Implantation Window in IVF Patients with Elevated Serum Progesterone and Oestradiol Level. Geburtshilfe Frauenheilkd. 2016;76:709–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Kodithuwakku SP, Ng PY, Chai J, Ng EHY, Yeung WSB, et al. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: An in vitro co-culture study. Hum Reprod. 2010;25:479–90.

    PubMed  Google Scholar 

  40. Mebratu Y, Tesfaigzi Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer? Cell Cycle. 2010;8:1168–75.

    Google Scholar 

  41. Arlier S, Murk W, Guzeloglu-Kayisli O, Semerci N, Larsen K, Tabak MS, et al. The extracellular signal-regulated kinase 1/2 triggers angiogenesis in human ectopic endometrial implants by inducing angioblast differentiation and proliferation. Am J Reprod Immunol. 2017;78:1–11.

    Google Scholar 

  42. Fluhr H, Spratte J, Bredow M, Heidrich S, Zygmunt M. Constitutive activity of Erk1/2 and NF-κB protects human endometrial stromal cells from death receptor-mediated apoptosis. Reprod Biol [Internet]. Society for Biology of Reproduction and; the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn; 2013;13:113–21. Available from: https://doi.org/10.1016/j.repbio.2013.03.001

    PubMed  Google Scholar 

  43. Wang Z, Gerstein M, Snyder M. RNA-Seq : a revolutionary tool for transcriptomics. Nature Reviews Genetics. 2010;10(1):57–63.

    CAS  Google Scholar 

  44. Jemt A, Sigurgeirsson B, Hanna A, Ujvari D, Westgren M, Lundeberg J. Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle. Biol Reprod. 2016;96:24–33. Available from: https://academic.oup.com/biolreprod/article/96/1/24/2725477/Comprehensive-RNA-sequencing-of-healthy-human .

  45. Ganesh V, Venkatesan V, Koshy T, Nellapalli S, Muthumuthiah S, Franklin S, et al. Systems Biology in Reproductive Medicine Association of estrogen , progesterone and follicle stimulating hormone receptor polymorphisms with in vitro fertilization outcomes. Syst Biol Reprod Med. Taylor & Francis; 2018;64:260–5. https://doi.org/10.1080/19396368.2018.1482030

    CAS  PubMed  Google Scholar 

  46. Paskulin DD, Cunha-filho JS, Paskulin LD, Augusto C, Souza B, Ashton-prolla P. ESR1 rs9340799 Is Associated with Endometriosis-Related Infertility and In Vitro Fertilization Failure. 2013;35:907–13.

  47. Swaminathan M, Ganesh V, Koshy T, et al. A Study on the Role of Estrogen Receptor Gene Polymorphisms in Female Infertility. Genetic Testing and Molecular Biomarkers. 2016;20(11):692–5.

    CAS  PubMed  Google Scholar 

  48. Biosciences M, Medicine V, Li S, Neill SRSO, Zhang Y, Holtzman MJ, et al. Estrogen receptor a is required for oviductal transport of embryos. :1595–607.

  49. Pan H, Suo P, Liu C, Wang J, Zhou S, Ma X, et al. The ESR1 gene in unexplained recurrent spontaneous abortion. Syst Biol Reprod Med. 2014;60:161–4.

    CAS  PubMed  Google Scholar 

  50. Boudjenah R, Molina-gomes D, Torre A, Bergere M, Bailly M, Wainer R, et al. Genetic Polymorphisms Influence the Ovarian Response to rFSH Stimulation in Patients Undergoing In Vitro Fertilization Programs with ICSI. 2012;7.

  51. De Mattos CS, Trevisan CM, Peluso C, Adami F, Cordts EB, Christofolini DM, et al. ESR1 and ESR2 gene polymorphisms are associated with human reproduction outcomes in Brazilian women. J Ovarian Res. 2014;7:1–9.

    Google Scholar 

  52. Wu X, Pan Y. Molecular characterization, mapping, and haplotype analysis of porcine matrix metalloproteinase genes MMP1 and MMP10. Biochem Genet. 2009;47:763–74.

    CAS  PubMed  Google Scholar 

  53. Quintero-Ronderos P, Mercier E, Fukuda M, Suarez C, Gonzalez R, Patarroyo M, et al. Novel genes and mutations in patients affected by recurrent spontaneous abortion. PLoS One. 2017;Submitted:1–14.

  54. Kim MS, Yu JH, Lee MY, Kim AL, Jo MH, Kim MG, et al. Differential expression of extracellular matrix and adhesion molecules in fetalorigin amniotic epithelial cells of preeclamptic pregnancy. PLoS One. 2016;11:1–16.

    Google Scholar 

  55. Kaartokallio T, Cervera A, Kyllönen A, Laivuori K, Kere J, Laivuori H. Gene expression profiling of pre-eclamptic placentae by RNA sequencing. Sci Rep [Internet]. Nature Publishing Group; 2015;5:1–15. Available from: https://doi.org/10.1038/srep14107

  56. Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation [J]. Birth Defects Research Part C: Embryo Today: Reviews. 2016;108(1):19–32.

    CAS  Google Scholar 

  57. Shi X, Guo X, Li X, Wang M, Qin R. Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover. Cancer Lett. 2018;433:76–85.

    CAS  PubMed  Google Scholar 

  58. Sohn SJ, Sarvis BK, Cado D, Winoto A. ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem. 2002;277:43344–51.

    CAS  PubMed  Google Scholar 

  59. Evans J, Salamonsen LA, Winship A, Menkhorst E, Nie G, Gargett CE, et al. Fertile ground : human endometrial programming and lessons in health and disease. Nat Publ Gr [Internet]. Nature Publishing Group; 2016;12:654–67. Available from: https://doi.org/10.1038/nrendo.2016.116

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(RAR 2715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, P., Liu, S. et al. Transcriptome sequencing of endometrium revealed alterations in mRNAs and lncRNAs after ovarian stimulation. J Assist Reprod Genet 37, 21–32 (2020). https://doi.org/10.1007/s10815-019-01616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01616-5

Keywords

Navigation