Skip to main content

Advertisement

Log in

Defining the role of FMR1 gene in unexplained recurrent spontaneous abortion

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Introduction

Recurrent spontaneous abortion is a multifactorial disorder and till date, various factors have been attributed in its pathogenesis. Still, approximately 50% of RSA cases remain unexplained. Premutation (PM) expanded allele of fragile-X mental retardation 1 (FMR1) gene is known to contribute to ovarian dysfunction in 20% of the cases. Recently, the link between expanded FMR1 allele and recurrent miscarriages has been reported.

Method

In the present prospective case–control study, we have investigated the status of CGG repeat size at 5′UTR of the FMR1 gene in women with unexplained RSA in comparison to age-matched healthy control women (n = 100 each). The genomic DNA from these samples was subjected to molecular analysis for characterization of CGG repeat size and composition at FMR1 gene

Results

As compared to the control women, the RSA women cohort had a higher frequency of carriers with alleles in gray zone (GZ) and expanded PM range, i.e., 2% (2/100) versus 5% (5/100), respectively. Also, the RSA cohort had a significantly higher number of normal alleles with ≥ 35 CGG repeats (24 out of 200 alleles) as compared to control cohort (8 out of 200 alleles). The number of larger FMR1 alleles with pure CGG repeat tract was found to be significantly higher (P = 0.0063) in the RSA cohort (15 out of 200 alleles) as compared to that in control cohort (3 out of 200 alleles).

Conclusion

Henceforth, the CGG expanded uninterrupted FMR1 allele might be associated with recurrent abortions and may help to explain many of these unexplained cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rai R, Regan L. Recurrent miscarriage. Lancet. 2006;368:601–11.

    Article  PubMed  Google Scholar 

  2. Royal College of Obstetricians and Gynaecologists (RCOG). The investigation and treatment of couples with recurrent first-trimester and second-trimester miscarriage. Green-top Guideline No. 17. Royal College of Obstetricians and Gynaecologists (RCOG), 2011.

  3. Practice Committee of the American Society for Reproductive Medicine, 2012Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012; 98: 1103–1111

  4. Ali O, Hakimi I, Chanana A, et al. Grossesse sur utérus cloisonné menée à terme: à propos d’un cas avec revue de la literature. The Pan African Medical Journal. 2015;22:219.

    PubMed  PubMed Central  Google Scholar 

  5. Cohn DM, Goddijn M, Middeldorp S, et al. Recurrent miscarriage and antiphospholipid antibodies: prognosis of subsequent pregnancy. J Thromb Haemost. 2010;8:2208–13.

    Article  CAS  PubMed  Google Scholar 

  6. Srinivas SK, Ma Y, Sammel MD, Chou D, et al. Placental inflammation and viral infection are implicated in second trimester pregnancy loss. Am J Obstet Gynecol. 2006;195:797–802.

    Article  CAS  PubMed  Google Scholar 

  7. Arredondo F, Noble LS. Endocrinology of recurrent pregnancy loss. Semin Reprod Med. 2006;24:33–9.

    Article  CAS  PubMed  Google Scholar 

  8. Pluchino N, Drakopoulos P, Wenger JM, Petignat P, et al. Hormonal causes of recurrent pregnancy loss (RPL). Hormones (Athens). 2014;13(3):314–22.

    Article  Google Scholar 

  9. Niroumanesh S, Mehdipour P, Farajpour A, Darvish S. A cytogenetic study of couples with repeated spontaneous abortions. Ann Saudi Med. 2011;31:77–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dubey S, Chowdhury MR, Prahlad B, Kumar V, Mathur R, et al. Cytogenetic causes for recurrent spontaneous abortions – an experience of 742 couples (1484 cases). Indian J Hum Genet. 2005;11:94–8.

    Article  Google Scholar 

  11. Iravathy GK, Raina V, Verma S, Chadha G. Cytogenetics and genetic counselling of patients in North India. J K Science. 2006;8:28–30.

    Google Scholar 

  12. Stephenson MD. Frequency of factors associated with habitual abortion in 197 couples. Fertil Steril. 1996;66(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  13. Stephenson M, Kutteh W. Evaluation and management of recurrent early pregnancy loss. Clin Obstet Gynecol. 2007;50(1):132–45.

    Article  PubMed  Google Scholar 

  14. Toth B, Jeschke U, Rogenhofer N, Scholz C, Wurfel W, Thaler CJ, et al. Recurrent miscarriage: current concepts in diagnosis and treatment. J Reprod Immunol. 2010;85(1):25–32 Epub 2010/02/27.

    Article  CAS  PubMed  Google Scholar 

  15. Daher S, Mattar R, Gueuvoghlanian-Silva BY, Torloni MR. Genetic polymorphisms and recurrent spontaneous abortions: an overview of current knowledge. Am J Reprod Immunol. 2012;67(4):341–7.

    Article  CAS  PubMed  Google Scholar 

  16. Rull K, Nagirnaja L, Laan M. Genetics of recurrent miscarriage: challenges, current knowledge, future directions. Front Genet. 2012;3:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sullivan AK, Marcus M, Epstein MP, et al. Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod. 2005;20(2):402–12.

    Article  CAS  PubMed  Google Scholar 

  18. Pastore LM, Young SL, Baker VL, Karns LB, Williams CD. Silverman LM Elevated prevalence of 35-44 FMR1 trinucleotide repeats in women with diminished ovarian reserve. Reprod Sci. 2012 Nov;19(11):1226–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Streuli I, Fraisse T, Ibecheole V, Moix I, Morris MA, de Ziegler D. Intermediate and premutation FMR1 alleles in women with occult primary ovarian insufficiency. Fertil Steril. 2009;92(2):464–70.

    Article  CAS  PubMed  Google Scholar 

  20. Gleicher N, Weghofer A, Barad DH. A pilot study of premature ovarian senescence: I. Correlation of triple CGG repeats on the FMR1 gene to ovarian reserve parameters FSH and anti-Müllerian hormone. Fertil Steril. 2009;91(5):1700–6.

    Article  CAS  PubMed  Google Scholar 

  21. Karimov CB, Moragianni VA, Cronister A, Srouji S, Petrozza J, Racowsky C, et al. Increased frequency of occult fragile X-associated primary ovarian insufficiency in infertile women with evidence of impaired ovarian function. Hum Reprod. 2011;26(8):2077–83.

    Article  CAS  PubMed  Google Scholar 

  22. Sullivan SD, Welt C, Sherman S. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med. 2011;29:299–307.

    Article  PubMed  Google Scholar 

  23. Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci. 2017;10:290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Murray A, Webb J, MacSwiney F, Shipley EL, Morton NE, Conway GS. Serum concentrations of follicle stimulating hormone may predict premature ovarian failure in FRAXA premutation women. Hum Reprod. 1999;14:1217–8.

    Article  CAS  PubMed  Google Scholar 

  25. Rohr J, Allen EG, Charen K, Giles J, He W, Dominguez C, et al. Anti-Mullerian hormone indicates early ovarian decline in fragile X mental retardation (FMR1) premutation carriers: a preliminary study. Hum Reprod. 2008;23:1220–5.

    Article  CAS  PubMed  Google Scholar 

  26. Harper PS, Jones L. Huntington's disease: genetic and molecular studies. In: Harper PS, Jones L, editors. Huntington’s disease, edited by Bates GP. Oxford, UK: Oxford University Press; 2002. p. 113–58.

    Google Scholar 

  27. Dean DD, Agarwal S, Tripathi P. Connecting links between genetic factors defining ovarian reserve and recurrent miscarriages. J Assist Reprod Genet. 2018;35(12):2121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bodega B, Bione S, Dalprà L, Toniolo D, Ornaghi F, et al. Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Hum Reprod. 2005;21(4):952–7.

    Article  PubMed  Google Scholar 

  29. Lekovich J, Man L, Xu K, Canon C, Lilienthal D, et al. CGG repeat length and AGG interruptions as indicators of fragile X-associated diminished ovarian reserve. Genet Med. 2018;20(9):957–64.

    Article  CAS  PubMed  Google Scholar 

  30. Srinivasan M, Dean DD, Agarwal S. Molecular screening of intellectually disabled and premature ovarian failure cases for CGG repeat expansion at FMR1 locus: implication of combined triplet repeat primed polymerase chain reaction and methylation-specific polymerase chain reaction analysis. Neurol India. 2016;64(6):1175–9.

    Article  Google Scholar 

  31. Bibi G, Malcov M, Yuval Y, Reches A, Ben-Yosef D, et al. The effect of CGG repeat number on ovarian response among fragile X premutation carriers undergoing preimplantation genetic diagnosis. Fertil Steril. 2010;94(3):869–74.

    Article  CAS  PubMed  Google Scholar 

  32. Pastore LM, Christianson MS, McGuinness B, Vaught KC, et al. Does theFMR1 gene affect IVF success? Reprod BioMed Online. 2019;38(4):560–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bretherick KL, Fluker MR, Robinson WP. FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Hum Genet. 2005;117:376–82.

    Article  CAS  PubMed  Google Scholar 

  34. Bodega B, Bione S, Dalpr’a L, Toniolo D, Ornaghi F, Vegetti W, et al. Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Hum Reprod. 2006;21:952–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sherman SL. Premature ovarian failure in the fragile X syndrome. Am J Med Genet. 2000;97:189–94.

    Article  CAS  PubMed  Google Scholar 

  36. Te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8:141–54.

    Article  Google Scholar 

  37. Watson MS, Breg WR, Pauls D, Brown WT, Carroll AJ, Howard-Peebles PN, et al. Aneuploidy and the fragile X syndrome. Am J Med Genet. 1988;30(1-2):115–21.

    Article  CAS  PubMed  Google Scholar 

  38. Murray A, Ennis S, MacSwiney F, Webb J, Morton NE. Reproductive and menstrual history of females with fragile X expansions. Eur J Hum Genet. 2000;8:247–52.

    Article  CAS  PubMed  Google Scholar 

  39. Hundscheid RD, Smits AP, Thomas CM, Kiemeney LA, Braat DD. Female carriers of fragile X premutations have no increased risk for additional diseases other than premature ovarian failure. Am J Med Genet A. 2003;117A:6–9.

    Article  CAS  PubMed  Google Scholar 

  40. Allen EG, Sullivan AK, Marcus M, Small C, Dominguez C, Epstein MP, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod. 2007;22:2142–52.

    Article  CAS  PubMed  Google Scholar 

  41. Trout SW, Seifer DB. Do women with unexplained recurrent pregnancy loss have higher day 3 serum FSH and estradiol values? Fertil Steril, 2000, vol. 74 (pg. 335-337)

    Article  CAS  PubMed  Google Scholar 

  42. Gurbuz B, Yalti S, Ozden S, Ficicioglu C. High basal estradiol level and FSH/LH ratio in unexplained recurrent pregnancy loss. Arch Gynecol Obstet. 2004;270:37–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dean DD, Agarwal S, Kapoor D, Vati C. Molecular characterization of FMR1 gene in reproductive age women and premature ovarian insufficiency cases by TP-PCR. J mol Diagn Ther. 2017;22:91–100.

    Article  CAS  Google Scholar 

  44. Chatterjee S, Maitra A, Kadam S, et al. CGG repeat sizing in the FMR1 gene in Indian women with premature ovarian failure. Reprod BioMed Online. 2009;19(2):281–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kline J, Kinney A, Brown S, Levin B, Oppenheimer K, Warburton D. Trisomic pregnancy and intermediate CGG repeat length at the FMR1 locus. Hum Reprod. 2012;27(7):2224–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the SGPGI of Medical Sciences, Lucknow, Uttar Pradesh, India, for providing the infrastructure for the research work. DDD is thankful Council of Science and Industrial Research (CSIR)–New Delhi for providing her fellowship.

Funding

This study was supported by the intramural project grant funded by the SGPGI of Medical Sciences, Lucknow, India (2015-36-IMP-83).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Agarwal.

Ethics declarations

The study was approved by the institutional ethical committee (IEC: 2016-28-PHD-90) and informed consent was obtained from the cases and controls.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dean, D.D., Agarwal, S. & Muthuswamy, S. Defining the role of FMR1 gene in unexplained recurrent spontaneous abortion. J Assist Reprod Genet 36, 2245–2250 (2019). https://doi.org/10.1007/s10815-019-01591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01591-x

Keywords

Navigation