Skip to main content

Advertisement

Log in

Interleukin-23 receptor (IL-23R) gene polymorphisms and haplotypes associated with the risk of preeclampsia: evidence from cross-sectional and in silico studies

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Pre-eclampsia is a relatively common pregnancy disorder. Serum concentrations of certain pro-inflammatory molecules and cytokines like interleukin-23 may affect the pathogenesis of pre-eclampsia. The interleukin-23 receptor (IL-23R) gene plays an important role in the progression of inflammatory and autoimmune diseases and IL-23 polymorphisms might influence the susceptibility of pre-eclampsia. The aim of the recent study was to establish the association between IL-23R gene polymorphisms and the susceptibility for developing of pre-eclampsia.

Methods

One hundred and fifty-eight pregnant patients with pre-eclampsia and 153 controls were genotyped using RFLP-PCR and AS-PCR. Also, an in silico analysis was performed to predict possible effects of these variations on IL-23R mRNA and protein structures.

Results

The frequency of the AG genotype of rs11209026 is related to a higher risk of pre-eclampsia. The mutant C and A allele in rs10889677 and rs11209026 SNPs, respectively, are correlated with the risk of pre-eclampsia and they are more frequent in severe late onset PE. We found higher frequency of the haplotype CG in patients with pre-eclampsia in comparison to healthy controls, as well as, the CG haplotype frequency significantly increased the risk of PE in severe, early onset, and late onset sub-groups. The results of computational analysis predicted rs11209026 and rs10889677 SNPs as functional variations, which can influence IL-23R mRNA and protein.

Conclusions

The results of present study show positive association between polymorphisms in the IL-23R gene and pre-eclampsia. Therefore, the presence of IL-23R rs11209026, rs10889677 polymorphism might be markers for the genetic susceptibility to pre-eclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steegers EA, Von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–44.

    Article  PubMed  Google Scholar 

  2. Redman CW, Sargent IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response—a review. Placenta. 2003;24:S21–7.

    Article  PubMed  Google Scholar 

  3. Redman CW, Sargent IL. Placental stress and pre-eclampsia: a revised view. Placenta. 2009;30:38–42.

    Article  CAS  Google Scholar 

  4. Myers J, Mires G, Macleod M, Baker P. In preeclampsia, the circulating factors capable of altering in vitro endothelial function precede clinical disease. Hypertension. 2005;45(2):258–63.

    Article  CAS  PubMed  Google Scholar 

  5. Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180(2):499–506.

    Article  CAS  PubMed  Google Scholar 

  6. Jahantigh D, Mousavi M, Forghani F, Javan MR, Movahedinia S, Rezaei M. Association between maternal circulating IL-27 levels and preeclampsia. Cytokine. 2018;102:163–7.

    Article  CAS  PubMed  Google Scholar 

  7. Fu B, Tian Z, Wei H. TH17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol Immunol. 2014;11(6):564–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arngrimsson R, Bjornsson S, Geirsson RT, Bjornsson H, Walker JJ, Snaedal G. Genetic and familial predisposition to eclampsia and preeclampsia in a defined population. Int J Gynecol Obstet. 1991;35(2):191–2.

    Article  Google Scholar 

  9. Chesley LC, Cooper DW. Genetics of hypertension in pregnancy: possible single gene control of pre-eclampsia and eclampsia in the descendants of eclamptic women. BJOG Int J Obstet Gynaecol. 1986;93(9):898–908.

    Article  CAS  Google Scholar 

  10. Adams EM, Finlayson A. Familial aspects of pre-eclampsia and hypertension in pregnancy. Obstet Gynecol Surv. 1962;17(3):350–1.

    Article  Google Scholar 

  11. Haram K, Mortensen JH, Nagy B. Genetic aspects of preeclampsia and the HELLP syndrome. J Pregnancy. 2014;2014:1–13.

    Article  CAS  Google Scholar 

  12. Schmella MJ, Roberts JM, Conley YP, Ren D, Storvold GL, Ingles SA, et al. Endoglin pathway genetic variation in preeclampsia: a validation study in Norwegian and Latina cohorts. Pregnancy Hypertens. 2018;12:144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Soellner L, Kopp KM, Mütze S, Meyer R, Begemann M, Rudnik S, et al. NLRP genes and their role in preeclampsia and multi-locus imprinting disorders. J Perinat Med. 2018;46(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  14. Gray KJ, Saxena R, Karumanchi SA. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Am J Obstet Gynecol. 2018;218(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  15. Williams RR, Hunt SC, Hopkins PN, Wu LL, Lalouel JM. Evidence for single gene contributions to hypertension and lipid disturbances: definition, genetics, and clinical significance. Clin Genet. 1994;46(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  16. Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, McDermott MF, et al. Cytokine gene polymorphism in human disease: on-line databases, supplement 1. Genes Immun. 2001;2(2):61–70.

    Article  CAS  PubMed  Google Scholar 

  17. Vural P, Degirmencioglu S, Saral NY, Demirkan A, Akgul C, Yildirim G, et al. Tumor necrosis factor α, interleukin-6 and interleukin-10 polymorphisms in preeclampsia. J Obstet Gynaecol Res. 2010;36(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  18. Faisel F, Romppanen EL, Hiltunen M, Helisalmi S, Punnonen K, Salonen J, et al. Polymorphism in the interleukin 1 receptor antagonist gene in women with preeclampsia. J Reprod Immunol. 2003;60(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  19. Saarela T, Hiltunen M, Helisalmi S, Heinonen S, Laakso M. Polymorphisms of interleukin-6, hepatic lipase and calpain-10 genes, and preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2006;128(1–2):175–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hollis-Moffatt JE, Merriman ME, Rodger RA, Rowley KA, Chapman PT, Dalbeth N, et al. Evidence for association of an interleukin 23 receptor variant independent of the R381Q variant with rheumatoid arthritis. Ann Rheum Dis. 2009;68(8):1340–4.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang XY, Zhang HJ, Zhang Y, Fu YJ, He J, Zhu LP, et al. Identification and expression analysis of alternatively spliced isoforms of human interleukin-23 receptor gene in normal lymphoid cells and selected tumor cells. Immunogenetics. 2006;57(12):934–43.

    Article  CAS  PubMed  Google Scholar 

  22. Xavier JM, Shahram F, Davatchi F, Rosa A, Crespo J, Abdollahi BS, et al. Association study of IL10 and IL23R–IL12RB2 in Iranian patients with Behcet's disease. Arthritis Rheum. 2012;64(8):2761–72.

    Article  CAS  PubMed  Google Scholar 

  23. Jahantigh D, Colagar AH, Salimi S. Genetic polymorphisms and haplotypes of the DJ-1 gene promoter associated with the susceptibility to male infertility. J Assist Reprod Genet. 2017;34(12):1673–82.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salimi S, Nakhaee A, Jafari M, Jahantigh D, Sandooghi M, Zakeri Z, et al. Combination effect of GSTM1, GSTT1 and GSTP1 polymorphisms and risk of systemic lupus erythematosus. Iran J Public Health. 2015;44(6):814–21.

    PubMed  PubMed Central  Google Scholar 

  25. Salimi S, Keshavarzi F, Mohammadpour-Gharehbagh A, Moodi M, Mousavi M, Karimian M, et al. Polymorphisms of the folate metabolizing enzymes: association with SLE susceptibility and in silico analysis. Gene. 2017;637:161–72.

    Article  CAS  PubMed  Google Scholar 

  26. Mohammadpour-Gharehbagh A, Salimi S, Keshavarzi F, Saeidian F, Mousavi M, Teimoori B, et al. Genetic variants in 3′-UTRs of MTHFR in the pregnancies complicated with preeclampsia and bioinformatics analysis. J Cell Biochem. 2018;119(1):773–81.

    Article  CAS  PubMed  Google Scholar 

  27. Jahantigh D, Hosseinzadeh Colagar A. XRCC5 VNTR, XRCC6 -61C>G, and XRCC7 6721G>T gene polymorphisms associated with male infertility risk: evidences from case-control and in silico studies. Int J Endocrinol. 2017;2017(4795076):1–16.

    Article  CAS  Google Scholar 

  28. Yong YO, Lin HE. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8.

    Article  Google Scholar 

  29. Perez-Sepulveda A, Torres MJ, Khoury M, Illanes SE. Innate immune system and preeclampsia. Front Immunol. 2014;5:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Lima TH, Sass N, Mattar R, Moron AF, Torloni MR, Franchim CS, et al. Cytokine gene polymorphisms in preeclampsia and eclampsia. Hypertens Res. 2009;32(7):565.

    Article  CAS  PubMed  Google Scholar 

  31. Mohajertehran F, Afshari JT, Rezaieyazdi Z, Ghomian N. Association of single nucleotide polymorphisms in the human tumor necrosis factor-α and interleukin 1-β genes in patients with pre-eclampsia. Iran J Allergy Asthma Immunol. 2012;11(3):224–9.

    CAS  PubMed  Google Scholar 

  32. Li J, Liu M, Zong J, Tan P, Wang J, Wang X, et al. Genetic variations in IL1A and IL1RN are associated with the risk of preeclampsia in Chinese Han population. Sci Rep. 2014;4:5250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yalcin B, Atakan N, Dogan S. Association of interleukin-23 receptor gene polymorphism with B ehçet disease. Clin Exp Dermatol. 2014;39(8):881–7.

    Article  CAS  PubMed  Google Scholar 

  34. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rueda B, Orozco G, Raya E, Fernandez-Sueiro JL, Mulero J, Blanco FJ, et al. The IL23R Arg381Gln non-synonymous polymorphism confers susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2008;67:1451–4.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J, et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 2008;4:e1000041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang Z, Hennein L, Tao Y, Tao L. Interleukin-23 receptor gene polymorphism may enhance expression of the IL-23 receptor, IL-17, TNF-α and IL-6 in Behcet’s disease. PLoS One. 2015;10(7):e0134632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pidasheva S, Trifari S, Phillips A, Hackney JA, Ma Y, Smith A, et al. Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One. 2011;6(10):e25038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc Natl Acad Sci. 2011;108(23):9560–5.

    Article  PubMed  Google Scholar 

  40. Hazlett J, Stamp LK, Merriman T, Highton J, Hessian PA. IL-23R rs11209026 polymorphism modulates IL-17A expression in patients with rheumatoid arthritis. Genes Immun. 2012;13(3):282–7.

    Article  CAS  PubMed  Google Scholar 

  41. Huber AK, Jacobson EM, Jazdzewski K, Concepcion ES, Tomer Y. Interleukin (IL)-23 receptor is a major susceptibility gene for graves’ ophthalmopathy: the IL-23/T-helper 17 axis extends to thyroid autoimmunity. J Clin Endocrinol Metab. 2008;93(3):1077–81.

    Article  CAS  PubMed  Google Scholar 

  42. Zwiers A, Kraal L, van de Pouw Kraan TC, Wurdinger T, Bouma G, Kraal G. Cutting edge: a variant of the IL-23R gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012 Jan;18:1101494.

    Google Scholar 

  43. Wang H, Guo M, Liu F, Wang J, Zhou Z, Ji J, et al. Role of IL-17 variants in preeclampsia in Chinese Han women. PLoS One. 2015;10(10):e0140118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lau SY, Guild SJ, Barrett CJ, Chen Q, McCowan L, Jordan V, et al. Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in preeclampsia: a systematic review and meta-analysis. Am J Reprod Immunol. 2013;70(5):412–27.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study supported by grant number 171/94 (Zbmu.1.REC.1396.25) from the Zabol University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forough Forghani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahantigh, D., Forghani, F. & Zidanloo, S.G. Interleukin-23 receptor (IL-23R) gene polymorphisms and haplotypes associated with the risk of preeclampsia: evidence from cross-sectional and in silico studies. J Assist Reprod Genet 36, 1523–1536 (2019). https://doi.org/10.1007/s10815-019-01479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01479-w

Keywords

Navigation