Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality

Abstract

Purpose

This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction.

Methods

Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS < 20), group 2 (n = 38): mild (20 ≤ ROS < 40), group 3 (n = 31): moderate (40 ≤ ROS < 60), and group 4 (n = 43): high (ROS ≥ 60). A comprehensive analysis of SP and semen parameters, including conventional semen characteristics, measurement of total antioxidant capacity (TAC), sperm DNA fragmentation index (DFI), chromatin maturation index (CMI), H19-Igf2 methylation status, and untargeted seminal metabolic profiling using nuclear magnetic resonance spectroscopy (1H-NMR), was carried out.

Result(s)

The methylation status of H19 and Igf2 was significantly different in specimens with high ROS (P < 0.005). Metabolic fingerprinting of these SP samples showed upregulation of trimethylamine N-oxide (P < 0.001) and downregulations of tryptophan (P < 0.05) and tyrosine/tyrosol (P < 0.01). High ROS significantly reduced total sperm motility (P < 0.05), sperm concentration (P < 0.001), and seminal TAC (P < 0.001) but increased CMI and DFI (P < 0.005). ROS levels have a positive correlation with Igf2 methylation (r = 0.19, P < 0.05), DFI (r = 0.40, P < 0.001), CMI (r = 0.39, P < 0.001), and trimethylamine N-oxide (r = 0.45, P < 0.05) and a negative correlation with H19 methylation (r = − 0.20, P < 0.05), tryptophan (r = − 0.45, P < 0.05), sperm motility (r = − 0.20, P < 0.05), sperm viability (r = − 0.23, P < 0.01), and sperm concentration (r = − 0.30, P < 0.001).

Conclusion(s)

Results showed significant correlation between ROS levels and H19-Igf2 gene methylation as well as semen parameters. These findings are critical to identify idiopathic male infertility and its management through assisted reproduction technology (ART).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Jarow JP, Sharlip ID, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. J Urol. 2002;167:2138–44.

    Article  PubMed  Google Scholar 

  2. 2.

    Darbandi S, Darbandi M. Lifestyle modifications on further reproductive problems. Cresco J Reprod Sci. 2016;1:1–2.

    Google Scholar 

  3. 3.

    Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol. 2012;38:576–94.

    Article  PubMed  Google Scholar 

  4. 4.

    Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutat Res-Rev Mutat. 2011;727:62–71.

    Article  CAS  Google Scholar 

  5. 5.

    Esteves SC. A clinical appraisal of the genetic basis in unexplained male infertility. J Hum Reprod Sci. 2013;6:176–82.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril. 2013;99:998–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gannon JR, Emery BR, Jenkins TG, Carrell DT. The sperm epigenome: implications for the embryo. New York: Springer; 2014.

    Google Scholar 

  8. 8.

    Li J-Y, Lees-Murdock DJ, Xu G-L, Walsh CP. Timing of establishment of paternal methylation imprints in the mouse. Genomics. 2004;84:952–60.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Gomes MVM, Pelosi GG. Epigenetic vulnerability and the environmental influence on health. Exp Biol Med. 2013;238:859–65.

    Article  CAS  Google Scholar 

  10. 10.

    Biermann K, Steger K. Epigenetics in male germ cells. J Androl. 2007;28:466–80.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Klenova EM, Morse HC, Ohlsson R, Lobanenkov VV. The novel BORIS+CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol. 2002;12:399–414.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forne T, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Dev. 2009;136:3413–21.

    Article  CAS  Google Scholar 

  13. 13.

    Poplinski A, Tuttelmann F, Kanber D, Horsthemke B, Gromoll J. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl. 2010;33:642–9.

    CAS  PubMed  Google Scholar 

  14. 14.

    Olszewska M, Barciszewska MZ, Fraczek M, Huleyuk N, Chernykh VB, Zastavna D, et al. Global methylation status of sperm DNA in carriers of chromosome structural aberrations. Asian J Androl. 2016;19:117–24.

    PubMed Central  Google Scholar 

  15. 15.

    Kerjean A, Dupont JM, Vasseur C, Le Tessier D, Cuisset L, Paldi A, et al. Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet. 2000;9:2183–7.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Boissonnas CC, El Abdalaoui H, Haelewyn V, Fauque P, Dupont JM, Gut I, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18:73–80.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Gunes S, Agarwal A, Henkel R, Mahmutoglu A, Sharma R, Esteves S, et al. Association between promoter methylation of MLH1 and MSH2 and reactive oxygen species in oligozoospermic men—a pilot study. Andrologia. 2017;50(3):1–6.

    Google Scholar 

  18. 18.

    Juyena NS, Stelletta C. Seminal plasma: an essential attribute to spermatozoa. J Androl. 2012;33:536–51.

    Article  PubMed  Google Scholar 

  19. 19.

    Minai-Tehrani A, Jafarzadeh N, Gilany K. Metabolomics: a state-of-the-art technology for better understanding of male infertility. Andrologia. 2016;48(6):609–16.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the human metabolome database in 2013. Biochem Biophys Res Commun. 2012:D801–7.

  21. 21.

    Deepinder F, Chowdary HT, Agarwal A. Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Rev Mol Diagn. 2007;7:351–8.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet. 2009;17:1582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kagami M, Nagai T, Fukami M, Yamazawa K, Ogata T. Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST. J Assist Reprod Gen. 2007;24:131–6.

    Article  Google Scholar 

  24. 24.

    Carrell DT, Aston KI, Oliva R, Emery B, De Jonge C. The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res. 2016;363:295–312.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Bhusari SS, Dobosy JR, Fu V, Almassi N, Oberley T, Jarrard DF. Superoxide dismutase 1 knockdown induces oxidative stress and DNA methylation loss in the prostate. Epigenet. 2010;5:402–9.

    Article  CAS  Google Scholar 

  26. 26.

    Kasperczyk A, Dobrakowski M, Czuba ZP, Horak S, Kasperczyk S. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile. Toxicol Appl Pharmacol. 2015;284:339–44.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, et al. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. MHR: Basic Sci Reprod Med. 2015;21:502–15.

    CAS  Google Scholar 

  28. 28.

    WHO. WHO laboratory manual for the examination and processing of human semen. Geneva: World Health Organization; 2010.

    Google Scholar 

  29. 29.

    Homa ST, Vessey W, Perez-Miranda A, Riyait T, Agarwal A. Reactive oxygen species (ROS) in human semen: determination of a reference range. J Assist Reprod Genet. 2015;32:757–64.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Shamsi MB, Venkatesh S, Pathak D, Deka D, Dada R. Sperm DNA damage & oxidative stress in recurrent spontaneous abortion (RSA). Indian J Med Res. 2011;133:550–1.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Jiang L, Zheng T, Huang J, Mo J, Zhou H, Liu M, et al. Association of semen cytokines with reactive oxygen species and histone transition abnormalities. J Assist Reprod Gen. 2016;33:1239–46.

    Article  Google Scholar 

  32. 32.

    Agarwal A, Sharma R, Gupta S, Harlev A, Ahmad G, du Plessis SS, et al. Oxidative stress in human reproduction: shedding light on a complicated phenomenon. Cham: Springer International Publishing; 2017.

    Google Scholar 

  33. 33.

    Mahfouz R, Sharma R, Sharma D, Sabanegh E, Agarwal A. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril. 2009;91:805–11.

    Article  PubMed  Google Scholar 

  34. 34.

    Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M, et al. Halosperm® is an easy, available, and cost-effective alternative for determining sperm DNA fragmentation. Fertil Steril. 2005;84:860.

    Article  PubMed  Google Scholar 

  35. 35.

    Esteves SC, Sharma RK, Gosálvez J, Agarwal A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol. 2014;46:1037–52.

    Article  PubMed  Google Scholar 

  36. 36.

    Barnard L, Aston KI. Spermatogenesis: methods and protocols. New York: Humana; 2012.

    Google Scholar 

  37. 37.

    Zini A, Agarwal A. Sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. New York: Springer; 2011.

    Google Scholar 

  38. 38.

    Paiva C, Amaral A, Rodriguez M, Canyellas N, Correig X, Ballescà J, et al. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance (1H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Andrology. 2015;3:496–505.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Brown FF, Campbell ID, Kuchel PW. Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS Lett. 1977;82:12–6.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Viant MR. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun. 2003;310:943–8.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Niederberger C. The “omics” of human male infertility: integrating big data in a systems biology approach. J Urol. 2016;196:295–312.

    Article  Google Scholar 

  42. 42.

    Kostidis S, Addie RD, Morreau H, Mayboroda OA, Giera M. Quantitative NMR analysis of intra- and extracellular metabolism of mammalian cells: a tutorial. Anal Chim Acta. 2017;980:1–24.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, Mougios V, et al. 1H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine. J Proteome Res. 2010;9:6405–16.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Tost J, Gut IG. DNA methylation analysis by pyrosequencing. Nat Protoc. 2007;2:2265–75.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Höcker M, Rosenberg I, Xavier R, Henihan RJ, Wiedenmann B, Rosewicz S, et al. Oxidative stress activates the human histidine decarboxylase promoter in AGS gastric cancer cells. J Biol Chem. 1998;273:23046–54.

    Article  PubMed  Google Scholar 

  46. 46.

    Ravanbakhsh S, Liu P, Bjordahl TC, Mandal R, Grant JR, Wilson M, et al. Seminal plasma metabolomics approach for the diagnosis of unexplained male infertility. PLoS One. 2015;10:1–13.

    Google Scholar 

  47. 47.

    Alonso A, Marsal S, Julià A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:1–20.

    Article  Google Scholar 

  48. 48.

    Darbandi M, Darbandi S, Khorshid HRK, Akhondi MM, Mokarram P, Sadeghi MR. A simple, rapid and economic manual method for human sperm DNA extraction in genetic and epigenetic studies. Middle East Fertil Soc J, 2017.

  49. 49.

    Li Y, Tollefsbol TO. DNA methylation detection: bisulfite genomic sequencing analysis. Epigenet Protoc. 2011;79:11–21.

    Article  CAS  Google Scholar 

  50. 50.

    Schuebel KE, Chen W, Cope L, Glöckner SC, Suzuki H, Yi J-M, et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 2007;3:1709–23.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Mokarram P, Kumar K, Brim H, Naghibalhossaini F, Saberi-firoozi M, Nouraie M, et al. Distinct high-profile methylated genes in colorectal cancer. PLoS One. 2009;4:1–9.

    Article  CAS  Google Scholar 

  52. 52.

    Worley B, Powers R. Multivariate analysis in metabolomics. Curr Metabolomics. 2013;1:92–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Mahadevan S, Shah SL, Marrie TJ, Slupsky CM. Analysis of metabolomic data using support vector machines. Anal Chem. 2008;80:7562–70.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, et al. The role and interaction of imprinted genes in human fetal growth. Philos Trans R Soc B. 2015;370:1–12.

    Article  CAS  Google Scholar 

  55. 55.

    Nordin M, Bergman D, Halje M, Engström W, Ward A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif. 2014;47:189–99.

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb Perspect Biol. 2011;3:1–17.

    Article  CAS  Google Scholar 

  57. 57.

    Kanduri C. Long noncoding RNAs: lessons from genomic imprinting. BBA-Gene Regul Mech. 1859;2016:102–11.

    Google Scholar 

  58. 58.

    Kingsley SL, Deyssenroth MA, Kelsey KT, Awad YA, Kloog I, Schwartz JD, et al. Maternal residential air pollution and placental imprinted gene expression. Environ Int. 2017;108:204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Gabory A, Ripoche M-A, Yoshimizu T, Dandolo L. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res. 2006;113:188–93.

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Arney KL. H19 and Igf2—enhancing the confusion? Trends Genet. 2003;19:17–23.

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72:156–60.

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94:1728–33.

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Marques CJ, Francisco T, Sousa S, Carvalho F, Barros A, Sousa M. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril. 2010;94:585–94.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Stouder C, Somm E, Paoloni-Giacobino A. Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod Toxicol. 2011;31:507–12.

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Maher AD, Patki P, Lindon JC, Want EJ, Holmes E, Craggs M, et al. Seminal oligouridinosis: low uridine secretion as a biomarker for infertility in spinal neurotrauma. Clin Chem. 2008;54:2063–6.

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Gupta A, Mahdi AA, Ahmad MK, Shukla KK, Jaiswer SP, Shankhwar SN. 1H NMR spectroscopic studies on human seminal plasma: a probative discriminant function analysis classification model. J Pharm Biomed Anal. 2011;54:106–13.

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–69.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Son DO, Satsu H, Shimizu M. Histidine inhibits oxidative stress- and TNF-α-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Lett. 2005;579:4671–7.

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Peterson JW, Boldogh I, Popov VL, Saini SS, Chopra AK. Anti-inflammatory and antisecretory potential of histidine in Salmonella-challenged mouse small intestine. Lab Investig. 1998;78:523–34.

    CAS  PubMed  Google Scholar 

  70. 70.

    Jiménez-Trejo F, Tapia-Rodríguez M, Cerbón M, Kuhn DM, Manjarrez-Gutiérrez G, Mendoza-Rodríguez CA, et al. Evidence of 5-HT components in human sperm: implications for protein tyrosine phosphorylation and the physiology of motility. Reproduction. 2012;144:677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    El-Sheshtawy RI, El-Nattat WS, Sabra HA. Effect of addition of catalase with or without L-tryptophan on cryopreservation of bull extended semen and conception rate. Glob Vet. 2013;11:280–4.

    CAS  Google Scholar 

  72. 72.

    Naz RK, Rajesh PB. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod Biol Endocrin. 2004;2:1–12.

    Article  CAS  Google Scholar 

  73. 73.

    Pukazhenthi BS, Long JA, Wildt DE, Ottinger MA, Armstrong DL, Howard J. Regulation of sperm function by protein tyrosine phosphorylation in diverse wild felid species. J Androl. 1998;19:675–85.

    CAS  PubMed  Google Scholar 

  74. 74.

    Sati L, Cayli S, Delpiano E, Sakkas D, Huszar G. The pattern of tyrosine phosphorylation in human sperm in response to binding to zona pellucida or hyaluronic acid. Reprod Sci. 2014;21:573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Gupta GS. Proteomics of spermatogenesis. New York: Springer; 2005.

    Google Scholar 

  76. 76.

    Banihani SA. Semen quality as affected by olive oil. Int J Food Prop. 2017;20:1901–6.

    CAS  Google Scholar 

  77. 77.

    Gomes VPM, Torres C, Rodriguez-Borges JE, Paiva-Martins F. A convenient synthesis of hydroxytyrosol monosulfate metabolites. J Agric Food Chem. 2015;63:9565–71.

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Negri L, Benaglia R, Monti E, Morenghi E, Pizzocaro A, Setti PEL. Effect of superoxide dismutase supplementation on sperm DNA fragmentation. Arch Ital Urol Androl. 2017;89:212–8.

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Bieniek JM, Drabovich AP, Lo KC. Seminal biomarkers for the evaluation of male infertility. Asian J Androl. 2016;18:426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Qiao S, Wu W, Chen M, Tang Q, Xia Y, Jia W, et al. Seminal plasma metabolomics approach for the diagnosis of unexplained male infertility. PLoS One. 2017;12:1–13.

    Google Scholar 

  81. 81.

    Chen X, Hu C, Dai J, Chen L. Metabolomics analysis of seminal plasma in infertile males with kidney-yang deficiency: a preliminary study. Evid-Based Compl Alt. 2015;2015:1–8.

    Google Scholar 

  82. 82.

    Agarwal A, Ahmad G, Sharma R. Reference values of reactive oxygen species in seminal ejaculates using chemiluminescence assay. J Assist Reprod Gene. 2015;32:1721–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all patients and their family members who voluntarily participated in this study. In addition, we thank the director of the Phytochemistry and the Medicinal Chemistry Research Center at Shahid Beheshti University of Medicinal Sciences, SBMU (Iran, Tehran) and the Reproductive Center of Cleveland Clinic (Cleveland, USA) for their assistance.

Author’s roles

Mahsa Darbandi (data interpretation, study design, execution, analysis, manuscript drafting and revision), Sara Darbandi (data interpretation, study design, execution, analysis, manuscript drafting and revision), Ashok Agarwal (data interpretation, study design, analysis, manuscript review, revision and critical discussion), Saradha Baskaran (data interpretation, manuscript preparation, review and revision), Sulagna Dutta (data interpretation, manuscript preparation, review and revision), Pallav Sengupta (data interpretation, manuscript preparation, review and revision), Hamid Reza Khorram Khorshid (data interpretation, study design, manuscript drafting), Sandro Esteves (data interpretation, manuscript review and revision), Kambiz Gilany (acquisition of data, analysis), Mehdi Hedayati (data interpretation, study design, execution), Fatemeh Nobakht (acquisition of data, execution, analysis), Mohammad Mehdi Akhondi (data interpretation, study design), Niknam Lakpour (acquisition of data, study design, execution), and Mohammad Reza Sadeghi (data interpretation, study design, manuscript drafting and critical discussion). All authors read and approved the final manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Sadeghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants

All applicable international, national, and/or institutional guidelines for the use of human tissues were followed. All procedures performed in studies involving human subjects were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

The authors consider that the first two authors should be regarded as joint first authors.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darbandi, M., Darbandi, S., Agarwal, A. et al. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J Assist Reprod Genet 36, 241–253 (2019). https://doi.org/10.1007/s10815-018-1350-y

Download citation

Keywords

  • Sperm DNA fragmentation
  • Sperm DNA methylation
  • Oxidative stress
  • Reactive oxygen species
  • Total antioxidant capacity