Abstract
Purpose
Poor fertilization during conventional IVF is difficult to predict in the absence of abnormal semen parameters; large-scale studies are lacking. The purpose of this study is to evaluate factors associated with low fertilization rates in conventional insemination IVF cycles.
Methods
A retrospective cohort study evaluating demographic, reproductive evaluation, and IVF cycle characteristics to identify predictors of low fertilization (defined as 2PN/MII ≤ 30% per cycle). Participants were included if they were undergoing their first IVF cycle utilizing fresh autologous oocytes and conventional insemination with male partner’s sperm (with normal pretreatment semen analysis). They were randomly divided into a training set and a validation set; validation modeling with logistic regression and binary distribution was utilized to identify covariates associated with low fertilization.
Results
Postprocessing sperm concentration of less than 40 million/ml and postprocessing sperm motility < 50% on the day of retrieval were the strongest predictors of low fertilization in the training dataset. Next, in the validation set, cycles with either low postprocessing concentration (≤ 40 million/ml) or low postprocessing progressive motility (≤ 50%) were 2.9–times (95% CI 1.4, 6.2) more likely to have low fertilization than cycles without either risk factor. Furthermore, cycles with low postprocessing concentration and progressive motility were 13.4 times (95% CI 4.01, 45.06) more likely to have low fertilization than cycles without either risk factor.
Conclusions
Postprocessing concentration and progressive motility on the day of oocyte retrieval are predictive of low fertilization in conventional IVF cycles with normal pretreatment diagnostic semen analysis parameters.
This is a preview of subscription content, access via your institution.
References
Barlow P, Englert Y, Puissant F, Lejeune B, Delvigne A, Van Rysselberge M, et al. Fertilization failure in IVF: why and what next? Hum Reprod. 1990;5(4):451–6.
Matson P, Troup S, Lowe B, Ibrahim Z, Burslem R, Lieberman B. Fertilization of human oocytes in vitro by spermatozoa from oligozoospermic and normospermic men. Int J Androl. 1989;12(2):117–23.
Mahutte NG, Arici A. Failed fertilization: is it predictable? Curr Opin Obstet Gynecol. 2003;15(3):211–8.
van der Westerlaken L, Helmerhorst F, Dieben S, Naaktgeboren N. Intracytoplasmic sperm injection as a treatment for unexplained total fertilization failure or low fertilization after conventional in vitro fertilization. Fertil Steril. 2005;83(3):612–7.
Bhattacharya S, Hamilton M, Shaaban M, Khalaf Y, Seddler M, Ghobara T, et al. Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for the treatment of non-male-factor infertility: a randomised controlled trial. Lancet. 2001;357(9274):2075–9.
Jiaen L, Zsolt N, Hubert J, Herman T, Johan S, Michel C, et al. Analysis of 76 total fertilization failure cycles out of 2732 intracytoplasmic sperm injection cycles. Hum Reprod. 1995;10(10):2630–6.
Mahutte NG, Arici A. Failed fertilization: is it predictable? Curr Opin Obstet Gynecol. 2003;15(3):211–8. https://doi.org/10.1097/01.gco.0000072858.73466.aa.
Wall M, Marks K, Smith T, Gearon C, Muggleton-Harris A. Cytogenetic and fluorescent in-situ hybridization chromosomal studies on in-vitro fertilized and intracytoplasmic sperm injected'failed-fertilized'human oocytes. Human reprod. 1996;11((10)):2230–8.
Edirisinghe WR, Murch A, Junk S, Yovich JL. Cytogenetic abnormalities of unfertilized oocytes generated from in-vitro fertilization and intracytoplasmic sperm injection: a double-blind study. Human reprod. 1997;12(12):2784–91.
Segal TR, Mínguez-Alarcón L, Chiu Y-H, Williams PL, Nassan FL, Dadd R, et al. Urinary concentrations of 3-(diethylcarbamoyl) benzoic acid (DCBA), a major metabolite of N, N-diethyl-m-toluamide (DEET) and semen parameters among men attending a fertility center. Hum Reprod. 2017;32(12):2532–9.
World Health Organization. WHO laboratory manual for the examination and processing of human sperm. World Health Organizion,. 2010.
Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Oehninger S. Predictive value of abnormal sperm morphology in in vitro fertilization. Fertil Steril. 1988;49(1):112–7.
Mok-Lin E, Ehrlich S, Williams P, Petrozza J, Wright D, Calafat A, et al. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int J Androl. 2010;33(2):385–93.
Dewailly D, Lujan ME, Carmina E, Cedars MI, Laven J, Norman RJ, et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum Reprod Update. 2014;20(3):334–52. https://doi.org/10.1093/humupd/dmt061.
Aboulghar MA, Mansour RT, Serour GI, Amin YM, Kamal A. Prospective controlled randomized study of in vitro fertilization versus intracytoplasmic sperm injection in the treatment of tubal factor infertility with normal semen parameters. Fertil Steril. 1996;66(5):753–6.
Repping S, van Weert J-M, Mol BW, de Vries JW, van der Veen F. Use of the total motile sperm count to predict total fertilization failure in in vitro fertilization. Fertil Steril. 2002;78(1):22–8.
Kahyaoglu I, Demir B, Turkkanı A, Cınar O, Dilbaz S, Dilbaz B, et al. Total fertilization failure: is it the end of the story? J Assist Reprod Genet. 2014;31(9):1155–60. https://doi.org/10.1007/s10815-014-0281-5.
Boulet SL, Mehta A, Kissin DM, Warner L, Kawwass JF, Jamieson DJ. Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA. 2015;313(3):255–63.
of the American TPC. Intracytoplasmic sperm injection (ICSI) for non-male factor infertility: a committee opinion. Fertil Steril. 2012;98(6):1395–9.
Eftekhar M, Mohammadian F, Yousefnejad F, Molaei B, Aflatoonian A. Comparison of conventional IVF versus ICSI in non-male factor, normoresponder patients. Iranian J Reprod. Med. 2012;10(2):131–6.
Davies M, Rumbold A, Marino J, Willson K, Giles L, Whitrow M et al. Maternal factors and the risk of birth defects after IVF and ICSI: a whole of population cohort study. BJOG: An International Journal of Obstetrics & Gynaecology. 2016.
Kissin D, Zhang Y, Boulet S, Fountain C, Bearman P, Schieve L, et al. Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children. Hum Reprod. 2014;30(2):454–65.
Wen J, Jiang J, Ding C, Dai J, Liu Y, Xia Y et al. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertility and sterility. 2012;97(6):1331–7. e4.
Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13.
Roest J, van Heusden AM, Zeilmaker GH, Verhoeff A. Treatment policy after poor fertilization in the first IVF cycle. J Assist Reprod Genet. 1998;15(1):18–21.
Medicine ASoR. Intracytoplasmic sperm injection (ICSI) for non-male factor infertility: a committee opinion. Fertil Steril. 2012;98(6):1395–9.
Benadiva CA, Nulsen J, Siano L, Jennings J, Givargis HB, Maier D. Intracytoplasmic sperm injection overcomes previous fertilization failure with conventional in vitro fertilization. Fertil Steril. 1999;72(6):1041–4.
Kinzer DR, Barrett CB, Powers RD. Prognosis for clinical pregnancy and delivery after total fertilization failure during conventional in vitro fertilization or intracytoplasmic sperm injection. Fertil Steril. 2008;90(2):284–8.
Tomás C, Orava M, Tuomivaara L, Martikainen H. Low pregnancy rate is achieved in patients treated with intracytoplasmic sperm injection due to previous low or failed fertilization in in-vitro fertilization. Hum Reprod. 1998;13(1):65–70.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Harris, A.L., Vanegas, J.C., Hariton, E. et al. Semen parameters on the day of oocyte retrieval predict low fertilization during conventional insemination IVF cycles. J Assist Reprod Genet 36, 291–298 (2019). https://doi.org/10.1007/s10815-018-1336-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10815-018-1336-9
Keywords
- In vitro fertilization
- Conventional insemination
- Assisted reproductive technologies
- Semen analysis