Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 10, pp 1763–1771 | Cite as

Hippo signaling in the ovary and polycystic ovarian syndrome

  • Kristi Maas
  • Sheyla Mirabal
  • Alan Penzias
  • Paul M. Sweetnam
  • Kevin C. Eggan
  • Denny SakkasEmail author
Reproductive Physiology and Disease
  • 498 Downloads

Abstract

Purpose

To provide a commentary on our understanding of the role that the Hippo signaling pathway may play in patients with polycystic ovarian syndrome (PCOS) and how this understanding may impact the diagnosis of PCOS.

Methods

We assessed publications discussing the role of the Hippo signaling pathway in the ovary. In particular, we discuss how Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, has been used in treatment of patients with primary ovarian insufficiency. Furthermore, we discuss our own data on variations in Hippo signaling pathway gene expression in cumulus cells isolated from women undergoing IVF with a previous diagnosis of PCOS.

Results and conclusions

Aberrant Hippo signaling in PCOS patients is likely a contributing mechanism to the multifactorial etiology of the disease. Given the challenge of discerning the underlying etiology of oligo-ovulation in some patients, especially those with normal body mass indices, and the need for customized stimulation protocols for PCOS patients who have an increased risk of over-response and higher percentage of immature oocyte yield, it is important to identify these patients prior to treatment. Hippo gene expression fingerprints could potentially be used to more accurately define patients with PCOS. Additionally, targeting this pathway with pharmacologic agents could lead to non-surgical therapeutic options for PCOS.

Keywords

PCOS HIPPO signaling Cumulus cells IVF 

Supplementary material

10815_2018_1235_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)

Reference

  1. 1.
    Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.CrossRefPubMedGoogle Scholar
  2. 2.
    Hong AW, Meng Z, Guan KL. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol. 2016;13:324–37.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13:877–83.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Happe H, de Heer E, Peters DJ. Polycystic kidney disease: the complexity of planar cell polarity and signaling during tissue regeneration and cyst formation. Biochim Biophys Acta. 2011;1812:1249–55.CrossRefGoogle Scholar
  5. 5.
    Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen X, Bonfiglio R, Banerji S, Jackson DG, Salustri A, Richter RP. Micromechanical analysis of the hyaluronan-rich matrix surrounding the oocyte reveals a uniquely soft and elastic composition. Biophys J. 2016;110:2779–89.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Thorne JT, Segal TR, Chang S, Jorge S, Segars JH, Leppert PC. Dynamic reciprocity between cells and their microenvironment in reproduction. Biol Reprod. 2015;92:25.CrossRefPubMedGoogle Scholar
  8. 8.
    Dunn PF, Picologlou BF. Viscoelastic properties of cumulus oophorus. Biorheology. 1976;13:379–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Huang J, Reilein A, Kalderon D. Yorkie and Hedgehog independently restrict BMP production in escort cells to permit germline differentiation in the Drosophila ovary. Development. 2017;144:2584–94.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Polesello C, Tapon N. Salvador-warts-hippo signaling promotes Drosophila posterior follicle cell maturation downstream of notch. Curr Biol. 2007;17:1864–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36:1–24.CrossRefGoogle Scholar
  12. 12.
    Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110:17474–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Farah L, Lazenby AJ, Boots LR, Azziz R. Prevalence of polycystic ovary syndrome in women seeking treatment from community electrologists. Alabama Professional Electrology Association Study Group. J Reprod Med. 1999;44:870–4.PubMedGoogle Scholar
  14. 14.
    Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.PubMedGoogle Scholar
  15. 15.
    Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome part 2. Endocr Pract. 2015;21:1415–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: guide to the best practices in the evaluation and treatment of polycystic ovary. Endocr Pract. 2015;21:1291–300.Google Scholar
  17. 17.
    Dewailly D, Alebic MS, Duhamel A, Stojanovic N. Using cluster analysis to identify a homogeneous subpopulation of women with polycystic ovarian morphology in a population of non-hyperandrogenic women with regular menstrual cycles. Hum Reprod. 2014;29:2536–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Schmidt J, Weijdegard B, Mikkelsen AL, Lindenberg S, Nilsson L, Brannstrom M. Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women. Mol Hum Reprod. 2014;20:49–58.CrossRefPubMedGoogle Scholar
  19. 19.
    Fan L, Fan L, Ling J, Ma X, Cui YG, Liu JY. Involvement of HSP10 during the ovarian follicular development of polycystic ovary syndrome: study in both human ovaries and cultured mouse follicles. Gynecol Endocrinol. 2009;25:392–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Hewlett M, Chow E, Aschengrau A, Mahalingaiah S. Prenatal exposure to endocrine disruptors: a developmental etiology for polycystic ovary syndrome. Reprod Sci. 2016;Google Scholar
  21. 21.
    Kawamura K, Cheng Y, Sun YP, Zhai J, Diaz-Garcia C, Simon C, et al. Ovary transplantation: to activate or not to activate. Hum Reprod. 2015;30:2457–60.CrossRefPubMedGoogle Scholar
  22. 22.
    Hahn S, Bering van Halteren W, Roesler S, Schmidt M, Kimmig R, Tan S, et al. The combination of increased ovarian volume and follicle number is associated with more severe hyperandrogenism in German women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. 2006;114:175–81.CrossRefGoogle Scholar
  23. 23.
    Fu D, Lv X, Hua G, He C, Dong J, Lele SM, et al. YAP regulates cell proliferation, migration, and steroidogenesis in adult granulosa cell tumors. Endocr Relat Cancer. 2014;21:297–310.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang C, Jeong K, Jiang H, Guo W, Gu C, Lu Y, et al. YAP/TAZ regulates the insulin signaling via IRS1/2 in endometrial cancer. Am J Cancer Res. 2016;6:996–1010.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Derda R, Laromaine A, Mammoto A, Tang SK, Mammoto T, Ingber DE, et al. Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci U S A. 2009;106:18457–62.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):17.CrossRefGoogle Scholar
  27. 27.
    Takahashi K, Ozaki T, Okada M, Uchida A, Kitao M. Relationship between ultrasonography and histopathological changes in polycystic ovarian syndrome. Hum Reprod. 1994;9:2255–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Adams J, Franks S, Polson DW, Mason HD, Abdulwahid N, Tucker M, et al. Multifollicular ovaries: clinical and endocrine features and response to pulsatile gonadotropin releasing hormone. Lancet. 1985;2:1375–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Atiomo WU, Pearson S, Shaw S, Prentice A, Dubbins P. Ultrasound criteria in the diagnosis of polycystic ovary syndrome (PCOS). Ultrasound Med Biol. 2000;26:977–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Swanson M, Sauerbrei EE, Cooperberg PL. Medical implications of ultrasonically detected polycystic ovaries. J Clin Ultrasound. 1981;9:219–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Fragouli E, Lalioti MD, Wells D. The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility. Hum Reprod Update. 2014;20:1–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23:1118–27.CrossRefPubMedGoogle Scholar
  33. 33.
    Haouzi D, Assou S, Monzo C, Vincens C, Dechaud H, Hamamah S. Altered gene expression profile in cumulus cells of mature MII oocytes from patients with polycystic ovary syndrome. Hum Reprod. 2012;27:3523–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Hamamah S, Matha V, Berthenet C, Anahory T, Loup V, Dechaud H, et al. Comparative protein expression profiling in human cumulus cells in relation to oocyte fertilization and ovarian stimulation protocol. Reprod BioMed Online. 2006;13:807–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Adams J, Liu Z, Ren YA, Wun WS, Zhou W, Kenigsberg S, et al. Enhanced inflammatory transcriptome in the granulosa cells of women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2016;101:3459-68.CrossRefGoogle Scholar
  36. 36.
    Rotterdam ESHRE/ ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.Google Scholar
  37. 37.
    Jones MR, Goodarzi MO. Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril. 2016;106(1):25–3.CrossRefPubMedGoogle Scholar
  38. 38.
    El Hayek S, Bitar L, Hamdar LH, Mirza FG, Daoud G. Poly cystic ovarian syndrome: an updated overview. Front Physiol. 2016;7:124.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ardestani A, Lupse B, Maedler K. Hippo signaling: key emerging pathway in cellular and whole-body metabolism. Trends Endocrinol Metab. 2018;29:492–509.CrossRefGoogle Scholar
  40. 40.
    Legro RS, Brzyski RG, Diamond MP, Coutifaris C, Schlaff WD, Casson P, et al. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. N Engl J Med. 2014;371:119–29.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lin H, Li Y, Li L, Wang W, Yang D, Zhang Q. Is a GnRH antagonist protocol better in PCOS patients? A meta-analysis of RCTs. PLoS One. 2014;9:e91796.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Abu HH. Predictors of success of laparoscopic ovarian drilling in women with polycystic ovary syndrome: an evidence-based approach. Arch Gynecol Obstet. 2015;291:11–8.CrossRefGoogle Scholar
  43. 43.
    Li T, Zhao H, Zhao X, Zhang B, Cui L, Shi Y, et al. Identification of YAP1 as a novel susceptibility gene for polycystic ovary syndrome. J Med Genet. 2012;49:254–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Jiang LL, Xie JK, Cui JQ, Wei D, Yin BL, Zhang YN, et al. Promoter methylation of yes-associated protein (YAP1) gene in polycystic ovary syndrome. Medicine (Baltimore). 2017;96:e5768.CrossRefGoogle Scholar
  45. 45.
    Sun T, Pepling ME, Diaz FJ. Lats1 deletion causes increased germ cell apoptosis and follicular cysts in mouse ovaries. Biol Reprod. 2015;93:22.CrossRefPubMedGoogle Scholar
  46. 46.
    Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genetics. 2018.  https://doi.org/10.1007/s10815-018-1180-y.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Boston IVFWalthamUSA
  2. 2.OB/GYN, REI Division, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  3. 3.Fertility Specialists Medical GroupSan DiegoUSA
  4. 4.CellBridge LLCSalemUSA
  5. 5.Nano Terra IncCambridgeUSA
  6. 6.HSCRBHarvard UniversityCambridgeUSA

Personalised recommendations