Skip to main content
Log in

Effects of vitrification on the viability of alginate encapsulated isolated bovine pre-antral follicles

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Individual follicle cryopreservation techniques, without hydrogel support, are labor-intensive and a substantial proportion of isolated follicles are lost during handling and after warming. Therefore, the viability and morphology of isolated bovine (as a model for human) pre-antral follicles after vitrification and warming, when encapsulated in alginate beads, were investigated.

Methods

Bovine pre-antral follicles were mechanically isolated and divided into four different groups: (1) culture in 2% alginate beads (3D system) and vitrification in beads using mesh cups (3DVIT), (2) culture in 2% alginate beads (3DCUL), (3) culture in 96-well plates (2D system) and vitrification using High Security Vitrification straws® (2DVIT), (4) culture in a 2D system (2DCUL). The same vitrification and warming protocols were used for embedded (3DVIT) and non-embedded follicles (2DVIT).

Results

No differences were observed in follicle viability between group 2DCUL and 3DCUL. Group 3DVIT showed the lowest viability (45.9%) according to calcein and neutral red staining among all groups. Group 2DVIT displayed the highest viability (87.5%) and largest percentage of follicles with a well-preserved morphology.

Conclusions

Our results show that, using a vitification protocol optimized for non-embedded follicles, 2D culture is more effective in vitrifying isolated follicles. However, embedding in alginate allow to handle follicles more efficiently, i.e., without excessive manipulation and thus less labor-intensive in combination with a reduced loss of follicles during the procedure. Based on the increased work efficiency, but lower viability and higher proportion of follicles showing impaired morphology, we consider it advantageous to optimize the protocol for the vitrification of embedded follicles to increase survival and maintain morphology after vitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Howlader N, Noone A, Krapcho M, Garshell J, Neyman N, Altekruse S, et al. SEER cancer statistics review, 1975–2010. Bethesda, MD. National Cancer Institute. 2013;9

  2. Detti L, Martin DC, Williams LJ. Applicability of adult techniques for ovarian preservation to childhood cancer patients. J Assist Reprod Genet. 2012;29(9):985–95. https://doi.org/10.1007/s10815-012-9821-z.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96. https://doi.org/10.3322/CA.2007.0010.

    Article  PubMed  Google Scholar 

  4. Rodriguez-Wallberg KA, Oktay K. Options on fertility preservation in female cancer patients. Cancer Treat Rev. 2012;38(5):354–61. https://doi.org/10.1016/j.ctrv.2011.10.002.

    Article  PubMed  Google Scholar 

  5. Hyman JH, Tulandi T. Fertility preservation options after gonadotoxic chemotherapy. Clin Med Insights Reprod Health. 2013;7:61–9. https://doi.org/10.4137/CMRH.S10848.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leung W, Hudson MM, Strickland DK, Phipps S, Srivastava DK, Ribeiro RC, et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol. 2000;18(18):3273–9.

    Article  PubMed  CAS  Google Scholar 

  7. Lee S, Schover L, Partridge A, Patrizio P, Wallace W, Hagerty K. American Society of Clinical Oncology: recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24:2917–31.

    Article  PubMed  Google Scholar 

  8. Green DM, Kawashima T, Stovall M, Leisenring W, Sklar CA, Mertens AC, et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009;27(16):2677–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Seli E, Agarwal A. Fertility preservation in females: emerging technologies and clinical applications. first ed. New York: Springer; 2012.

  10. Donnez J, Martinez-Madrid B, Jadoul P, Van Langendonckt A, Demylle D, Dolmans M-M. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update. 2006;12(5):519–35.

    Article  PubMed  Google Scholar 

  11. Wallace WHB. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer. 2011;117(S10):2301–10.

    Article  PubMed  Google Scholar 

  12. Revelli A, Molinari E, Salvagno F, Delle Piane L, Dolfin E, Ochetti S. Oocyte cryostorage to preserve fertility in oncological patients. Obstet Gynecol Int. 2012;2012:1–7.

    Article  CAS  Google Scholar 

  13. Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med. 2011;43(6):437–50.

    Article  PubMed  Google Scholar 

  14. Donnez J, Jadoul P, Pirard C, Hutchings G, Demylle D, Squifflet J, et al. Live birth after transplantation of frozen-thawed ovarian tissue after bilateral oophorectomy for benign disease. Fertil Steril. 2012;98(3):720–5.

    Article  PubMed  Google Scholar 

  15. Jadoul P, Guilmain A, Squifflet J-L, Luyckx M, Votino R, Wyns C, et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 454 cases. Hum Reprod. 2017;32(5):1046–54.

    Article  PubMed  CAS  Google Scholar 

  16. Dolmans M-M, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116(16):2908–14.

    Article  PubMed  CAS  Google Scholar 

  17. Rosendahl M, Andersen MT, Ralfkiær E, Kjeldsen L, Andersen MK, Andersen CY. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril. 2010;94(6):2186–90.

    Article  PubMed  Google Scholar 

  18. Donnez J, Dolmans M-M. Fertility preservation in women. Nat Rev Endocrinol. 2013;9(12):735–49.

    Article  PubMed  CAS  Google Scholar 

  19. Martinez-Madrid B, Donnez J, Van Eyck A-S, Veiga-Lopez A, Dolmans M-M, Van Langendonckt A. Chick embryo chorioallantoic membrane (CAM) model: a useful tool to study short-term transplantation of cryopreserved human ovarian tissue. Fertil Steril. 2009;91(1):285–92.

    Article  PubMed  Google Scholar 

  20. Van Eyck A-S, Bouzin C, Feron O, Romeu L, Van Langendonckt A, Donnez J, et al. Both host and graft vessels contribute to revascularization of xenografted human ovarian tissue in a murine model. Fertil Steril. 2010;93(5):1676–85.

    Article  PubMed  Google Scholar 

  21. Shaw J, Cox S-L, Trounson A, Jenkin G. Evaluation of the long-term function of cryopreserved ovarian grafts in the mouse, implications for human applications. Mol Cell Endocrinol. 2000;161(1):103–10.

    Article  PubMed  CAS  Google Scholar 

  22. Amorim C, Gonçalves P, Figueiredo J. Cryopreservation of oocytes from pre-antral follicles. Hum Reprod Update. 2003;9(2):119–29.

    Article  PubMed  CAS  Google Scholar 

  23. Jorssen EP, Langbeen A, Fransen E, Martinez EL, Leroy JL, Bols PE. Monitoring preantral follicle survival and growth in bovine ovarian biopsies by repeated use of neutral red and cultured in vitro under low and high oxygen tension. Theriogenology. 2014;82(3):387–95. https://doi.org/10.1016/j.theriogenology.2014.04.019.

    Article  PubMed  CAS  Google Scholar 

  24. Aerts JM, Martinez-Madrid B, Leroy JL, Van Aelst S, Bols PE. Xenotransplantation by injection of a suspension of isolated preantral ovarian follicles and stroma cells under the kidney capsule of nude mice. Fertil Steril. 2010;94(2):708–14.

    Article  PubMed  Google Scholar 

  25. Chiti M, Dolmans M, Orellana R, Soares M, Paulini F, Donnez J, et al. Influence of follicle stage on artificial ovary outcome using fibrin as a matrix. Hum Reprod. 2015;31:427–35.

    PubMed  Google Scholar 

  26. Green LJ, Shikanov A. In vitro culture methods of preantral follicles. Theriogenology. 2016;86(1):229–38. https://doi.org/10.1016/j.theriogenology.2016.04.036.

    Article  PubMed  Google Scholar 

  27. Vanacker J, Luyckx V, Amorim C, Dolmans M-M, Van Langendonckt A, Donnez J, et al. Should we isolate human preantral follicles before or after cryopreservation of ovarian tissue? Fertil Steril. 2013;99(5):1363–8.

    Article  PubMed  Google Scholar 

  28. Langbeen A, Bartholomeus E, Leroy JL, Bols PE. Bovine in vitro reproduction models can contribute to the development of (female) fertility preservation strategies. Theriogenology. 2015;84(4):477–89.

    Article  PubMed  Google Scholar 

  29. Araujo VR, Gastal MO, Wischral A, Figueiredo JR, Gastal EL. Long-term in vitro culture of bovine preantral follicles: effect of base medium and medium replacement methods. Anim Reprod Sci. 2015;161:23–31. https://doi.org/10.1016/j.anireprosci.2015.07.006.

    Article  PubMed  CAS  Google Scholar 

  30. Gutierrez CG, Ralph JH, Telfer EE, Wilmut I, Webb R. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol Reprod. 2000;62(5):1322–8.

    Article  PubMed  CAS  Google Scholar 

  31. O'Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence 1. Biol Reprod. 2003;68(5):1682–6.

    Article  PubMed  CAS  Google Scholar 

  32. Gupta P, Ramesh H, Manjunatha B, Nandi S, Ravindra J. Production of buffalo embryos using oocytes from in vitro grown preantral follicles. Zygote. 2008;16(01):57–63.

    Article  PubMed  CAS  Google Scholar 

  33. Xiao S, Zhang J, Romero MM, Smith KN, Shea LD, Woodruff TK. In vitro follicle growth supports human oocyte meiotic maturation. Sci Rep. 2015;5:17323. https://doi.org/10.1038/srep17323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 2007;28(30):4439–48. https://doi.org/10.1016/j.biomaterials.2007.07.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Camboni A, Van Langendonckt A, Donnez J, Vanacker J, Dolmans MM, Amorim CA. Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology. 2013;67(1):64–9. https://doi.org/10.1016/j.cryobiol.2013.05.002.

    Article  PubMed  CAS  Google Scholar 

  36. Bian J, Li T, Ding C, Xin W, Zhu B, Zhou C. Vitreous cryopreservation of human preantral follicles encapsulated in alginate beads with mini mesh cups. J Reprod Dev. 2013;59(3):288–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jorssen EP, Langbeen A, Marei WF, Fransen E, De porte HF, Leroy JL, et al. Morphologic characterization of isolated bovine early preantral follicles during short-term individual in vitro culture. Theriogenology. 2015;84(2):301–11. https://doi.org/10.1016/j.theriogenology.2015.03.020.

    Article  PubMed  CAS  Google Scholar 

  38. Braw-Tal R, Yossefi S. Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J Reprod Fertil. 1997;109(1):165–71.

    Article  PubMed  CAS  Google Scholar 

  39. Langbeen A, Jorssen EP, Granata N, Fransen E, Leroy JL, Bols PE. Effects of neutral red assisted viability assessment on the cryotolerance of isolated bovine preantral follicles. J Assist Reprod Genet. 2014;31(12):1727–36. https://doi.org/10.1007/s10815-014-0340-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. De Clerck LS, Bridts CH, Mertens AM, Moens MM, Stevens WJ. Use of fluorescent dyes in the determination of adherence of human leucocytes to endothelial cells and the effect of fluorochromes on cellular function. J Immunol Methods. 1994;172(1):115–24.

    Article  PubMed  Google Scholar 

  41. Dohoo I, Martin S, Stryhn H. Veterinary epidemiological research. Second ed. Charlottetown: VER inc; 2009.

  42. Rodrigues A, Amorim C, Costa S, Santos R, Lucci C, Nunes J, et al. Cryopreservation and short-term culture of isolated caprine primordial follicles. Small Rumin Res. 2005;56(1):103–11.

    Article  Google Scholar 

  43. Amorim CA, Rondina D, Lucci CM, Gonçalves PBD, de Figueiredo JR, Giorgetti A. Permeability of ovine primordial follicles to different cryoprotectants. Fertil Steril. 2006;85:1077–81.

    Article  PubMed  CAS  Google Scholar 

  44. Paynter S, Cooper A, Gregory L, Fuller B, Shaw R. Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide. Hum Reprod. 1999;14(9):2338–42.

    Article  PubMed  CAS  Google Scholar 

  45. Cortvrindt R, Smitz J, Van Steirteghem A. Ovary and ovulation: in-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum Reprod. 1996;11(12):2656–66.

    Article  PubMed  CAS  Google Scholar 

  46. Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226(2):167–79.

    Article  PubMed  CAS  Google Scholar 

  47. Silva GM, Rossetto R, Chaves RN, Duarte AB, Araujo VR, Feltrin C, et al. In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. Zygote. 2015;23(4):475–84. https://doi.org/10.1017/S0967199414000070.

    Article  PubMed  CAS  Google Scholar 

  48. Choi MH, Oh JH, Kim TM, Han JY, Lim JM. Morphological criteria of bovine ovaries for predicting retrieval efficiency of preantral follicles. Asian australasian journal of animal sciences. 2006;19(12):1711–5.

    Article  Google Scholar 

  49. Da Silva-Buttkus P, Marcelli G, Franks S, Stark J, Hardy K. Inferring biological mechanisms from spatial analysis: prediction of a local inhibitor in the ovary. Proc Natl Acad Sci. 2009;106(2):456–61.

    Article  PubMed  Google Scholar 

  50. Yin H, Kristensen SG, Jiang H, Rasmussen A, Andersen CY. Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture. Hum Reprod. 2016;31(7):1531–9. https://doi.org/10.1093/humrep/dew049.

    Article  PubMed  CAS  Google Scholar 

  51. Hornick JE, Duncan FE, Shea LD, Woodruff TK. Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction. 2013;145(1):19–32. https://doi.org/10.1530/Rep-12-0233.

    Article  PubMed  CAS  Google Scholar 

  52. Armitage W, Juss B, Easty D. Differing effects of various cryoprotectants on intercellular junctions of epithelial (MDCK) cells. Cryobiology. 1995;32(1):52–9.

    Article  PubMed  CAS  Google Scholar 

  53. Santos RR, Tharasanit T, Figueiredo JR, Van Haeften T, Van den Hurk R. Preservation of caprine preantral follicle viability after cryopreservation in sucrose and ethylene glycol. Cell Tissue Res. 2006;325(3):523–31.

    Article  PubMed  CAS  Google Scholar 

  54. Smidsrød O, Skja G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71–8.

    Article  PubMed  Google Scholar 

  55. Sadeghnia S, Akhondi MM, Hossein G, Mobini S, Hosseini L, Naderi MM, et al. Development of sheep primordial follicles encapsulated in alginate or in ovarian tissue in fresh and vitrified samples. Cryobiology. 2016;72(2):100–5. https://doi.org/10.1016/j.cryobiol.2016.03.001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Silke Andries, Els Merckx and Katty Huybrechts for their excellent technical assistance and the local slaughterhouses for their cooperation in sample collection.

Financial support

All (co-)authors state that the funding of this research is provided by the independent Operational Costs of the University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anniek Bus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on the welfare of animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bus, A., van Hoeck, V., Langbeen, A. et al. Effects of vitrification on the viability of alginate encapsulated isolated bovine pre-antral follicles. J Assist Reprod Genet 35, 1187–1199 (2018). https://doi.org/10.1007/s10815-018-1208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1208-3

Keywords

Navigation