Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 6, pp 993–1003 | Cite as

Histone demethylase KDM4A and KDM4B expression in granulosa cells from women undergoing in vitro fertilization

  • Adam J. Krieg
  • Sarah R. Mullinax
  • Frances Grimstad
  • Kaitlin Marquis
  • Elizabeth Constance
  • Yan Hong
  • Sacha A. Krieg
  • Katherine F. Roby
Reproductive Physiology and Disease



To assess expression of the histone demethylases KDM4A and KDM4B in granulosa collected from women undergoing oocyte retrieval and to determine if expression was related to pregnancy outcome.


Cumulus and mural granulosa cells were obtained from women undergoing oocyte retrieval. KDM4A and KDM4B mRNA expression was determined by qRT-PCR. KDM4A and KDM4B proteins were immunohistochemically localized in ovarian tissue sections obtained from archival specimens.


KDM4A and KDM4B protein was localized to oocytes, granulosa cells, and theca and luteal cells in ovaries from reproductive-aged women. KDM4A and KDM4B mRNA expression was overall higher in cumulus compared to mural granulosa. When comparing granulosa demethylase gene expression, KDM4A and KDM4B mRNA expression was higher in both cumulus and mural granulosa from not pregnant patients compared to patients in the pregnant-live birth group.


Histone demethylases KDM4A and KDM4B mRNA are differentially expressed in cumulus and mural granulosa. Expression of both KDM4A and KDM4B mRNA was lower in cumulus granulosa and mural granulosa from pregnant compared to not pregnant patients. These findings suggest that altered expression of histone demethylases may impact epigenetic changes in granulosa cells associated with pregnancy.


Ovary Granulosa KDM4 Histone demethylase Pregnancy IVF 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10815_2018_1151_Fig5_ESM.jpg (360 kb)

(JPEG 359 kb)

10815_2018_1151_MOESM1_ESM.eps (2.5 mb)
High resolution image (EPS 2520 kb)
10815_2018_1151_Fig6_ESM.jpg (341 kb)

(JPEG 340 kb)

10815_2018_1151_MOESM2_ESM.eps (2.3 mb)
High resolution image (EPS 2381 kb)
10815_2018_1151_Fig7_ESM.jpg (375 kb)

(JPEG 375 kb)

10815_2018_1151_MOESM3_ESM.eps (2.4 mb)
High resolution image (EPS 2423 kb)
10815_2018_1151_Fig8_ESM.jpg (391 kb)

(JPEG 390 kb)

10815_2018_1151_MOESM4_ESM.eps (2.4 mb)
High resolution image (EPS 2463 kb)
10815_2018_1151_Fig9_ESM.jpg (391 kb)

(JPEG 391 kb)

10815_2018_1151_MOESM5_ESM.eps (2.4 mb)
High resolution image (EPS 2478 kb)
10815_2018_1151_Fig10_ESM.jpg (387 kb)

(JPEG 387 kb)

10815_2018_1151_MOESM6_ESM.eps (2.5 mb)
High resolution image (EPS 2529 kb)
10815_2018_1151_Fig11_ESM.jpg (384 kb)

(JPEG 383 kb)

10815_2018_1151_MOESM7_ESM.eps (2.4 mb)
High resolution image (EPS 2464 kb)
10815_2018_1151_Fig12_ESM.jpg (369 kb)

(JPEG 368 kb)

10815_2018_1151_MOESM8_ESM.eps (2.4 mb)
High resolution image (EPS 2439 kb)
10815_2018_1151_MOESM9_ESM.docx (157 kb)
ESM 9 (DOCX 157 kb)


  1. 1.
    Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev. 2014;81:284–314.CrossRefPubMedGoogle Scholar
  2. 2.
    Monniaux D, Clement F, Dalbies-Tran R, Estienne A, Fabre S, Mansanet C, et al. The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: what is the link? Biol Reprod. 2014;90:85.CrossRefPubMedGoogle Scholar
  3. 3.
    Richards JS, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest. 2010;120:963–72.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Roy A, Matzuk MM. Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction. 2006;131:207–19.CrossRefPubMedGoogle Scholar
  5. 5.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15:703–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48:491–507.CrossRefPubMedGoogle Scholar
  8. 8.
    Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6:227.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    McLean CM, Karemaker ID, van Leeuwen F. The emerging roles of DOT1L in leukemia and normal development. Leukemia. 2014;28:2131–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Hillringhaus L, Yue WW, Rose NR, Ng SS, Gileadi C, Loenarz C, et al. Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. J Biol Chem. 2011;286:41616–25.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Labbe RM, Holowatyj A, Yang ZQ. Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. Am J Transl Res. 2013;6:1–15.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 2013;73:2936–42.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kawazu M, Saso K, Tong KI, McQuire T, Goto K, Son DO, et al. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS One. 2011;6:e17830.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shi L, Sun L, Li Q, Liang J, Yu W, Yi X, et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc Natl Acad Sci U S A. 2011;108:7541–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Couse JF, Yates MM, Deroo BJ, Korach KS. Estrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins. Endocrinology. 2005;146:3247–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Drummond AE, Fuller PJ. Ovarian actions of estrogen receptor-beta: an update. Semin Reprod Med. 2012;30:32–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Emmen JM, Couse JF, Elmore SA, Yates MM, Kissling GE, Korach KS. In vitro growth and ovulation of follicles from ovaries of estrogen receptor (ER){alpha} and ER{beta} null mice indicate a role for ER{beta} in follicular maturation. Endocrinology. 2005;146:2817–26.CrossRefPubMedGoogle Scholar
  18. 18.
    Rumi MK, Singh P, Roby KF, Zhao X, Iqbal K, Ratri A, et al. Defining the role of estrogen receptor beta in the regulation of female fertility. Endocrinology. 2017;158:2330–43.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stouffer RL. Progesterone as a mediator of gonadotrophin action in the corpus luteum: beyond steroidogenesis. Hum Reprod Update. 2003;9:99–117.CrossRefPubMedGoogle Scholar
  20. 20.
    Su EJ, Xin H, Monsivais D. The emerging role of estrogen receptor-beta in human reproduction. Semin Reprod Med. 2012;30:62–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Chu CH, Wang LY, Hsu KC, Chen CC, Cheng HH, Wang SM, et al. KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem. 2014;57:5975–85.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Duan L, Rai G, Roggero C, Zhang QJ, Wei Q, Ma SH, et al. KDM4/JMJD2 histone demethylase inhibitors block prostate tumor growth by suppressing the expression of AR and BMYB-regulated genes. Chem Biol. 2015;22:1185–96.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Qiu MT, Fan Q, Zhu Z, Kwan SY, Chen L, Chen JH, et al. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget. 2015;6:31702–20.PubMedPubMedCentralGoogle Scholar
  24. 24.
    De Gendt K, Verhoeven G. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice. Mol Cell Endocrinol. 2012;352:13–25.CrossRefPubMedGoogle Scholar
  25. 25.
    Kimura S, Matsumoto T, Matsuyama R, Shiina H, Sato T, Takeyama K, et al. Androgen receptor function in folliculogenesis and its clinical implication in premature ovarian failure. Trends Endocrinol Metab. 2007;18:183–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: balance is key. J Endocrinol. 2014;222:R141–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Lin LH, Baracat MC, Maciel GA, Soares JM Jr, Baracat EC. Androgen receptor gene polymorphism and polycystic ovary syndrome. Int J Gynaecol Obstet. 2013;120:115–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang R, Goodarzi MO, Xiong T, Wang D, Azziz R, Zhang H. Negative association between androgen receptor gene CAG repeat polymorphism and polycystic ovary syndrome? A systematic review and meta-analysis. Mol Hum Reprod. 2012;18:498–509.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang T, Liang W, Fang M, Yu J, Ni Y, Li Z. Association of the CAG repeat polymorphisms in androgen receptor gene with polycystic ovary syndrome: a systemic review and meta-analysis. Gene. 2013;524:161–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Akison LK, Robker RL. The critical roles of progesterone receptor (PGR) in ovulation, oocyte developmental competence and oviductal transport in mammalian reproduction. Reprod Domest Anim. 2012;47(Suppl 4):288–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim J, Bagchi IC, Bagchi MK. Control of ovulation in mice by progesterone receptor-regulated gene networks. Mol Hum Reprod. 2009;15:821–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kubota K, Cui W, Dhakal P, Wolfe MW, Rumi MA, Vivian JL, et al. Rethinking progesterone regulation of female reproductive cyclicity. Proc Natl Acad Sci U S A. 2016;113:4212–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Peluso JJ. Multiplicity of progesterone's actions and receptors in the mammalian ovary. Biol Reprod. 2006;75:2–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Stratmann A, Haendler B. The histone demethylase JARID1A regulates progesterone receptor expression. FEBS J. 2011;278:1458–69.CrossRefPubMedGoogle Scholar
  35. 35.
    Vicent GP, Nacht AS, Font-Mateu J, Castellano G, Gaveglia L, Ballare C, et al. Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev. 2011;25:845–62.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vicent GP, Nacht AS, Zaurin R, Font-Mateu J, Soronellas D, Le Dily F, et al. Unliganded progesterone receptor-mediated targeting of an RNA-containing repressive complex silences a subset of hormone-inducible genes. Genes Dev. 2013;27:1179–97.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sankar A, Kooistra SM, Gonzalez JM, Ohlsson C, Poutanen M, Helin K. Maternal expression of the histone demethylase Kdm4a is crucial for pre-implantation development. Development. 2017;144:3264–77.CrossRefPubMedGoogle Scholar
  38. 38.
    Salminen A, Kaarniranta K, Kauppinen A. Hypoxia-inducible histone lysine demethylases: impact on the aging process and age-related diseases. Aging Dis. 2016;7:180–200.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wilson C, Qiu L, Hong Y, Karnik T, Tadros G, Mau B, et al. The histone demethylase KDM4B regulates peritoneal seeding of ovarian cancer. Oncogene. 2017;36:2565–76.CrossRefPubMedGoogle Scholar
  40. 40.
    Thompson JG, Brown HM, Kind KL, Russell DL. The ovarian antral follicle: living on the edge of hypoxia or not? Biol Reprod. 2015;92:153.CrossRefPubMedGoogle Scholar
  41. 41.
    Fadhillah YS, Nishimura R, Okuda K. Hypoxia promotes progesterone synthesis during luteinization in bovine granulosa cells. J Reprod Dev. 2014;60:194–201.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kowalewski MP, Gram A, Boos A. The role of hypoxia and HIF1alpha in the regulation of STAR-mediated steroidogenesis in granulosa cells. Mol Cell Endocrinol. 2015;401:35–44.CrossRefPubMedGoogle Scholar
  43. 43.
    Rico C, Dodelet-Devillers A, Paquet M, Tsoi M, Lapointe E, Carmeliet P, et al. HIF1 activity in granulosa cells is required for FSH-regulated Vegfa expression and follicle survival in mice. Biol Reprod. 2014;90:135.CrossRefPubMedGoogle Scholar
  44. 44.
    Tam KK, Russell DL, Peet DJ, Bracken CP, Rodgers RJ, Thompson JG, et al. Hormonally regulated follicle differentiation and luteinization in the mouse is associated with hypoxia inducible factor activity. Mol Cell Endocrinol. 2010;327:47–55.CrossRefPubMedGoogle Scholar
  45. 45.
    Yalu R, Oyesiji AE, Eisenberg I, Imbar T, Meidan R. HIF1A-dependent increase in endothelin 2 levels in granulosa cells: role of hypoxia, LH/cAMP, and reactive oxygen species. Reproduction. 2015;149:11–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Black JC, Atabakhsh E, Kim J, Biette KM, Van Rechem C, Ladd B, et al. Hypoxia drives transient site-specific copy gain and drug-resistant gene expression. Genes Dev. 2015;29:1018–31.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dobrynin G, McAllister TE, Leszczynska KB, Ramachandran S, Krieg AJ, Kawamura A, et al. KDM4A regulates HIF-1 levels through H3K9me3. Sci Rep. 2017;7:11094.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Roby KF, Weed J, Lyles R, Terranova PF. Immunological evidence for a human ovarian tumor necrosis factor-a. J Clin Endocrinol Metab. 1990;71:1096–102.CrossRefPubMedGoogle Scholar
  49. 49.
    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf. 2012;13:134.CrossRefGoogle Scholar
  50. 50.
    Bolat SE, Ozdemirci S, Kasapoglu T, Duran B, Goktas L, Karahanoglu E. The effect of serum and follicular fluid anti-Mullerian hormone level on the number of oocytes retrieved and rate of fertilization and clinical pregnancy. North Clin Istanb. 2016;3:90–6.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Keane K, Cruzat VF, Wagle S, Chaudhary N, Newsholme P, Yovich J. Specific ranges of anti-Mullerian hormone and antral follicle count correlate to provide a prognostic indicator for IVF outcome. Reprod Biol. 2017;17:51–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Zebitay AG, Cetin O, Verit FF, Keskin S, Sakar MN, Karahuseyinoglu S, et al. The role of ovarian reserve markers in prediction of clinical pregnancy. J Obstet Gynaecol. 2017;37:492–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Barton SE, Missmer SA, Ashby RK, Ginsburg ES. Multivariate analysis of the association between oocyte donor characteristics, including basal follicle stimulating hormone (FSH) and age, and IVF cycle outcomes. Fertil Steril. 2010;94:1292–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Ben-Haroush A, Farhi J, Zahalka Y, Sapir O, Meizner I, Fisch B. Correlations between antral follicle count and ultrasonographic ovarian parameters and clinical variables and outcomes in IVF cycles. Gynecol Endocrinol. 2012;28:432–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Hughes EG, Robertson DM, Handelsman DJ, Hayward S, Healy DL, de Kretser DM. Inhibin and estradiol responses to ovarian hyperstimulation: effects of age and predictive value for in vitro fertilization outcome. J Clin Endocrinol Metab. 1990;70:358–64.CrossRefPubMedGoogle Scholar
  56. 56.
    Provost MP, Acharya KS, Acharya CR, Yeh JS, Steward RG, Eaton JL, et al. Pregnancy outcomes decline with increasing body mass index: analysis of 239,127 fresh autologous in vitro fertilization cycles from the 2008–2010 Society for Assisted Reproductive Technology registry. Fertil Steril. 2016;105:663–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Rittenberg V, Seshadri S, Sunkara SK, Sobaleva S, Oteng-Ntim E, El-Toukhy T. Effect of body mass index on IVF treatment outcome: an updated systematic review and meta-analysis. Reprod BioMed Online. 2011;23:421–39.CrossRefPubMedGoogle Scholar
  58. 58.
    Bennett J, Baumgarten SC, Stocco C. GATA4 and GATA6 silencing in ovarian granulosa cells affects levels of mRNAs involved in steroidogenesis, extracellular structure organization, IGF-I activity, and apoptosis. Endocrinology. 2013;154:4845–58.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bennett J, Wu YG, Gossen J, Zhou P, Stocco C. Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility. Endocrinology. 2012;153:2474–85.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kim J, Sato M, Li Q, Lydon JP, Demayo FJ, Bagchi IC, et al. Peroxisome proliferator-activated receptor gamma is a target of progesterone regulation in the preovulatory follicles and controls ovulation in mice. Mol Cell Biol. 2008;28:1770–82.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nagashima T, Kim J, Li Q, Lydon JP, DeMayo FJ, Lyons KM, et al. Connective tissue growth factor is required for normal follicle development and ovulation. Mol Endocrinol. 2011;25:1740–59.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pelusi C, Ikeda Y, Zubair M, Parker KL. Impaired follicle development and infertility in female mice lacking steroidogenic factor 1 in ovarian granulosa cells. Biol Reprod. 2008;79:1074–83.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Robker RL, Russell DL, Espey LL, Lydon JP, O’Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A. 2000;97:4689–94.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rumi MA, Dhakal P, Kubota K, Chakraborty D, Lei T, Larson MA, et al. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing. Endocrinology. 2014;155:1991–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yazawa T, Kawabe S, Kanno M, Mizutani T, Imamichi Y, Ju Y, et al. Androgen/androgen receptor pathway regulates expression of the genes for cyclooxygenase-2 and amphiregulin in periovulatory granulosa cells. Mol Cell Endocrinol. 2013;369:42–51.CrossRefPubMedGoogle Scholar
  66. 66.
    Arnhold IJ, Latronico AC, Batista MC, Izzo CR, Mendonca BB. Clinical features of women with resistance to luteinizing hormone. Clin Endocrinol. 1999;51:701–7.CrossRefGoogle Scholar
  67. 67.
    Artini PG, Ruggiero M, Papini F, Valentino V, Uccelli A, Cela V, et al. Chromosomal abnormalities in women with premature ovarian failure. Gynecol Endocrinol. 2010;26:717–24.CrossRefPubMedGoogle Scholar
  68. 68.
    Bentov Y, Kenigsberg S, Casper RF. A novel luteinizing hormone/chorionic gonadotropin receptor mutation associated with amenorrhea, low oocyte yield, and recurrent pregnancy loss. Fertil Steril. 2012;97:1165–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Desai SS, Achrekar SK, Paranjape SR, Desai SK, Mangoli VS, Mahale SD. Association of allelic combinations of FSHR gene polymorphisms with ovarian response. Reprod BioMed Online. 2013;27:400–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Khoury K, Barbar E, Ainmelk Y, Ouellet A, Lehoux JG. Gonadal function, first cases of pregnancy, and child delivery in a woman with lipoid congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2009;94:1333–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Matsuzaki S, Yanase T, Murakami T, Uehara S, Nawata H, Yajima A. Induction of endometrial cycles and ovulation in a woman with combined 17alpha-hydroxylase/17,20-lyase deficiency due to compound heterozygous mutations on the p45017alpha gene. Fertil Steril. 2000;73:1183–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Mitri F, Bentov Y, Behan LA, Esfandiari N, Casper RF. A novel compound heterozygous mutation of the luteinizing hormone receptor -implications for fertility. J Assist Reprod Genet. 2014;31:787–94.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Okada M, Lee L, Maekawa R, Sato S, Kajimura T, Shinagawa M, et al. Epigenetic changes of the Cyp11a1 promoter region in granulosa cells undergoing luteinization during ovulation in female rats. Endocrinology. 2016;157:3344–54.CrossRefPubMedGoogle Scholar
  74. 74.
    Lee L, Asada H, Kizuka F, Tamura I, Maekawa R, Taketani T, et al. Changes in histone modification and DNA methylation of the StAR and Cyp19a1 promoter regions in granulosa cells undergoing luteinization during ovulation in rats. Endocrinology. 2013;154:458–70.CrossRefPubMedGoogle Scholar
  75. 75.
    Pruksananonda K, Wasinarom A, Sereepapong W, Sirayapiwat P, Rattanatanyong P, Mutirangura A. Epigenetic modification of long interspersed elements-1 in cumulus cells of mature and immature oocytes from patients with polycystic ovary syndrome. Clin Exp Reprod Med. 2016;43:82–9.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Jakimiuk AJ, Weitsman SR, Brzechffa PR, Magoffin DA. Aromatase mRNA expression in individual follicles from polycystic ovaries. Mol Hum Reprod. 1998;4:1–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Soderlund D, Canto P, Carranza-Lira S, Mendez JP. No evidence of mutations in the P450 aromatase gene in patients with polycystic ovary syndrome. Hum Reprod. 2005;20:965–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Yang F, Ruan YC, Yang YJ, Wang K, Liang SS, Han YB, et al. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction. 2015;150:289–96.CrossRefPubMedGoogle Scholar
  79. 79.
    Yu YY, Sun CX, Liu YK, Li Y, Wang L, Zhang W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil Steril. 2015;104:145–53.e6.CrossRefPubMedGoogle Scholar
  80. 80.
    Patel S, Zhou C, Rattan S, Flaws JA. Effects of endocrine-disrupting chemicals on the ovary. Biol Reprod. 2015;93:20.PubMedGoogle Scholar
  81. 81.
    Paulose T, Tannenbaum LV, Borgeest C, Flaws JA. Methoxychlor-induced ovarian follicle toxicity in mice: dose and exposure duration-dependent effects. Birth Defects Res B Dev Reprod Toxicol. 2012;95:219–24.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zama AM, Uzumcu M. Targeted genome-wide methylation and gene expression analyses reveal signaling pathways involved in ovarian dysfunction after developmental EDC exposure in rats. Biol Reprod. 2013;88:52.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adam J. Krieg
    • 1
    • 3
    • 4
    • 5
    • 6
  • Sarah R. Mullinax
    • 7
  • Frances Grimstad
    • 3
  • Kaitlin Marquis
    • 3
  • Elizabeth Constance
    • 3
  • Yan Hong
    • 3
  • Sacha A. Krieg
    • 1
    • 2
    • 3
    • 6
  • Katherine F. Roby
    • 1
    • 2
    • 7
  1. 1.Institute for Reproductive Health and Regenerative Medicine, Center for Reproductive SciencesUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Women’s Health Specialty Center Advanced Reproductive MedicineUniversity of Kansas Medical CenterKansas CityUSA
  3. 3.Department of Obstetrics and GynecologyUniversity of Kansas Medical CenterKansas CityUSA
  4. 4.Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityUSA
  5. 5.Department of Obstetrics and GynecologyOregon Health and Science UniversityPortlandUSA
  6. 6.Division of Reproductive and Developmental SciencesOregon National Primate Research CenterBeavertonUSA
  7. 7.Department of Anatomy and Cell BiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations