Skip to main content

Advertisement

Log in

Maternal carriers of the ANXA5 M2 haplotype are exposed to a greater risk for placenta-mediated pregnancy complications

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Annexin A5 (ANXA5) is a protein abundantly expressed in normal placenta where it contributes to the healthy outcome of a pregnancy. Lower ANXA5 levels have been observed in M2/ANXA5 haplotype carrying chorion. Consequently, this study aimed to assess the potential association of M2 maternal carrier status with the risk of recurrent pregnancy loss (RPL), the timing of miscarriages, and other obstetric complications, for the first time in a population from Latin America.

Methods

This study was designed as a prospective recruitment of RPL patients with post hoc analysis. The distribution of the M2/ANXA5 haplotype was compared between a group of 229 Argentine women with RPL and 100 parous controls, and was further analyzed in subgroups of patients stratified according to the timing of miscarriages and in relation to other obstetric complications.

Results

No significant differences were found in the distribution of M2 haplotype among either RPL patients or the subgroups with embryonic, early fetal, or late fetal losses compared to parous controls. Notwithstanding, maternal M2/ANXA5 was found to be independently associated with a higher risk of suffering intrauterine growth restriction (IUGR) and/or preeclampsia (PE). Simultaneously, the presence of inherited and/or acquired thrombophilia also proved to be an independent risk factor for these.

Conclusions

The association found between the maternal carriage of the M2/ANXA5 haplotype and an elevated risk of IUGR and/or PE supports the hypothesis that carrier status of this haplotype and the consequently reduced placental ANXA5 expression might be responsible, at least partially, for the onset of these gestational vascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ford HB, Schust DJ. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Rev Obstet Gynecol. 2009;2:76–83.

    PubMed  PubMed Central  Google Scholar 

  2. Egerup P, Kolte AM, Larsen EC, Krog M, Nielsen HS, Christiansen OB. Recurrent pregnancy loss: what is the impact of consecutive versus non-consecutive losses? Hum Reprod. 2016;31:2428–34.

  3. Rey E, Kahn SR, David M, Shrier I. Thrombophilic disorders and fetal loss: a meta-analysis. Lancet. 2003;361:901–8.

    Article  PubMed  Google Scholar 

  4. Middeldorp S. Pregnancy failure and heritable thrombophilia. Semin Hematol. 2007;44:93–7.

    Article  PubMed  Google Scholar 

  5. Rodger MA, Betancourt MT, Clark P, Lindqvist PG, Dizon-Townson D, Said J, et al. The association of factor V Leiden and prothrombin gene mutation and placenta-mediated pregnancy complications: a systematic review and meta-analysis of prospective cohort studies. PLoS Med. 2010;7:e1000292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Grandone E, Margaglione M. Inherited thrombophilia and gestational vascular complications. Best Pract Res Clin Haematol. 2003;16:321–32.

    Article  PubMed  Google Scholar 

  7. Krikun G, Lockwood CJ, Wu XX, Zhou XD, Guller S, Calandri C, et al. The expression of the placental anticoagulant protein, annexin V, by villous trophoblasts: immunolocalization and in vitro regulation. Placenta. 1994;15:601–12.

    Article  PubMed  CAS  Google Scholar 

  8. Andree HA, Stuart MC, Hermens WT, Reutelingsperger CP, Hemker HC, Frederik PM, et al. Clustering of lipid-bound annexin V may explain its anticoagulant effect. J Biol Chem. 1992;267:17907–12.

    PubMed  CAS  Google Scholar 

  9. Rand JH, Wu XX. Antibody-mediated interference with annexins in the antiphospholipid syndrome. Thromb Res. 2004;114:383–9.

    Article  PubMed  CAS  Google Scholar 

  10. Ueki H, Mizushina T, Laoharatchatathanin T, Terashima R, Nishimura Y, Rieanrakwong D, et al. Loss of maternal annexin A5 increases the likelihood of placental platelet thrombosis and foetal loss. Sci Rep. 2012;2:827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bouter A, Carmeille R, Gounou C, Bouvet F, Degrelle SA, Evain-Brion D, et al. Review: Annexin-A5 and cell membrane repair. Placenta. 2015;36(Suppl 1):S43–9.

    Article  PubMed  CAS  Google Scholar 

  12. Rand JH, Wu XX, Guller S, Gil J, Guha A, Scher J, et al. Reduction of annexin-V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recurrent spontaneous abortion. Am J Obstet Gynecol. 1994;171:1566–72.

    Article  PubMed  CAS  Google Scholar 

  13. Matsubayashi H, Arai T, Izumi S, Sugi T, McIntyre JA, Makino T. Anti-annexin V antibodies in patients with early pregnancy loss or implantation failures. Fertil Steril. 2001;76:694–9.

    Article  PubMed  CAS  Google Scholar 

  14. Gourvas V, Soulitzis N, Konstantinidou A, Dalpa E, Koukoura O, Koutroulakis D, et al. Reduced ANXA5 mRNA and protein expression in pregnancies complicated by preeclampsia. Thromb Res. 2014;133:495–500.

    Article  PubMed  CAS  Google Scholar 

  15. Bogdanova N, Horst J, Chlystun M, Croucher PJ, Nebel A, Bohring A, et al. A common haplotype of the annexin A5 (ANXA5) gene promoter is associated with recurrent pregnancy loss. Hum Mol Genet. 2007;16:573–8.

    Article  PubMed  CAS  Google Scholar 

  16. Chinni E, Tiscia GL, Colaizzo D, Vergura P, Margaglione M, Grandone E. Annexin V expression in human placenta is influenced by the carriership of the common haplotype M2. Fertil Steril. 2009;91:940–2.

    Article  PubMed  CAS  Google Scholar 

  17. Markoff A, Gerdes S, Feldner S, Bogdanova N, Gerke V, Grandone E. Reduced allele specific annexin A5 mRNA levels in placentas carrying the M2/ANXA5 allele. Placenta. 2010;31:937–40.

    Article  PubMed  CAS  Google Scholar 

  18. Tiscia G, Colaizzo D, Chinni E, Pisanelli D, Scianname N, Favuzzi G, et al. Haplotype M2 in the annexin A5 (ANXA5) gene and the occurrence of obstetric complications. Thromb Haemost. 2009;102:309–13.

    Article  PubMed  CAS  Google Scholar 

  19. Miyamura H, Nishizawa H, Ota S, Suzuki M, Inagaki A, Egusa H, et al. Polymorphisms in the annexin A5 gene promoter in Japanese women with recurrent pregnancy loss. Mol Hum Reprod. 2011;17:447–52.

    Article  PubMed  CAS  Google Scholar 

  20. Rogenhofer N, Engels L, Bogdanova N, Tuttelmann F, Markoff A, Thaler C. Paternal and maternal carriage of the annexin A5 M2 haplotype are equal risk factors for recurrent pregnancy loss: a pilot study. Fertil Steril. 2012;98:383–8.

    Article  PubMed  CAS  Google Scholar 

  21. Tuttelmann F, Ivanov P, Dietzel C, Sofroniou A, Tsvyatkovska TM, Komsa-Penkova RS, et al. Further insights into the role of the annexin A5 M2 haplotype as recurrent pregnancy loss factor, assessing timing of miscarriage and partner risk. Fertil Steril. 2013;100:1321–5.

    Article  PubMed  CAS  Google Scholar 

  22. Demetriou C, Abu-Amero S, White S, Peskett E, Markoff A, Stanier P, et al. Investigation of the Annexin A5 M2 haplotype in 500 white European couples who have experienced recurrent spontaneous abortion. Reprod BioMed Online. 2015;31:681–8.

    Article  PubMed  CAS  Google Scholar 

  23. Thean Hock T, Bogdanova N, Kai Cheen A, Kathirgamanathan S, Bin Abdullah R, Mohd Yusoff N, et al. M2/ANXA5 haplotype as a predisposition factor in Malay women and couples experiencing recurrent spontaneous abortion: a pilot study. Reprod BioMed Online. 2015;30:434–9.

    Article  PubMed  CAS  Google Scholar 

  24. Tiscia G, Colaizzo D, Favuzzi G, Vergura P, Martinelli P, Margaglione M, et al. The M2 haplotype in the ANXA5 gene is an independent risk factor for idiopathic small-for-gestational age newborns. Mol Hum Reprod. 2012;18:510–3.

    Article  PubMed  CAS  Google Scholar 

  25. Ota S, Miyamura H, Nishizawa H, Inagaki H, Inagaki A, Inuzuka H, et al. Contribution of fetal ANXA5 gene promoter polymorphisms to the onset of pre-eclampsia. Placenta. 2013;34:1202–10.

    Article  PubMed  CAS  Google Scholar 

  26. Practice Committee of American Society for Reproductive M. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013;99:63.

    Article  Google Scholar 

  27. Hamza A, Meyberg-Solomayer G, Juhasz-Boss I, Joukhadar R, Takacs Z, Solomayer EF, et al. Diagnostic methods of ectopic pregnancy and early pregnancy loss: a review of the literature. Geburtshilfe Frauenheilkd. 2016;76:377–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kolte AM, Bernardi LA, Christiansen OB, Quenby S, Farquharson RG, Goddijn M, et al. Terminology for pregnancy loss prior to viability: a consensus statement from the ESHRE early pregnancy special interest group. Hum Reprod. 2015;30:495–8.

    Article  PubMed  CAS  Google Scholar 

  29. ACOG Practice Bulletin No. 102: management of stillbirth. Obstet Gynecol. 2009;113:748–61.

  30. Heuser C, Dalton J, Macpherson C, Branch DW, Porter TF, Silver RM. Idiopathic recurrent pregnancy loss recurs at similar gestational ages. Am J Obstet Gynecol. 2010;203:343 e1–5.

    Article  Google Scholar 

  31. Uzan J, Carbonnel M, Piconne O, Asmar R, Ayoubi JM. Pre-eclampsia: pathophysiology, diagnosis, and management. Vasc Health Risk Manag. 2011;7:467–74.

    PubMed  PubMed Central  Google Scholar 

  32. Tikkanen M. Placental abruption: epidemiology, risk factors and consequences. Acta Obstet Gynecol Scand. 2011;90:140–9.

    Article  PubMed  Google Scholar 

  33. Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, O'Donoghue K, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol. 2013;208:290 e1–6.

    Article  Google Scholar 

  34. Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid. 2011;21:1081–125.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.

  36. Szecsi PB, Jorgensen M, Klajnbard A, Andersen MR, Colov NP, Stender S. Haemostatic reference intervals in pregnancy. Thromb Haemost. 2010;103:718–27.

    Article  PubMed  CAS  Google Scholar 

  37. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  PubMed  CAS  Google Scholar 

  38. Corach D, Lao O, Bobillo C, van Der Gaag K, Zuniga S, Vermeulen M, et al. Inferring continental ancestry of argentineans from autosomal, Y-chromosomal and mitochondrial DNA. Ann Hum Genet. 2010;74:65–76.

    Article  PubMed  CAS  Google Scholar 

  39. Catelli ML, Alvarez-Iglesias V, Gomez-Carballa A, Mosquera-Miguel A, Romanini C, Borosky A, et al. The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome. BMC Genet. 2011;12:77.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Avena S, Via M, Ziv E, Perez-Stable EJ, Gignoux CR, Dejean C, et al. Heterogeneity in genetic admixture across different regions of Argentina. PLoS One. 2012;7:e34695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Roberts DJ, Post MD. The placenta in pre-eclampsia and intrauterine growth restriction. J Clin Pathol. 2008;61:1254–60.

    Article  PubMed  CAS  Google Scholar 

  42. Larsen EC, Christiansen OB, Kolte AM, Macklon N. New insights into mechanisms behind miscarriage. BMC Med. 2013;11:154.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Homburger JR, Moreno-Estrada A, Gignoux CR, Nelson D, Sanchez E, Ortiz-Tello P, et al. Genomic insights into the ancestry and demographic history of South America. PLoS Genet. 2015;11:e1005602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Branch DW, Porter TF, Rittenhouse L, Caritis S, Sibai B, Hogg B, et al. Antiphospholipid antibodies in women at risk for preeclampsia. Am J Obstet Gynecol. 2001;184:825–32. discussion 32-4

    Article  PubMed  CAS  Google Scholar 

  45. Dizon-Townson DS, Nelson LM, Easton K, Ward K. The factor V Leiden mutation may predispose women to severe preeclampsia. Am J Obstet Gynecol. 1996;175:902–5.

    Article  PubMed  CAS  Google Scholar 

  46. Kupferminc MJ, Eldor A, Steinman N, Many A, Bar-Am A, Jaffa A, et al. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med. 1999;340:9–13.

    Article  PubMed  CAS  Google Scholar 

  47. Dudding T, Heron J, Thakkinstian A, Nurk E, Golding J, Pembrey M, et al. Factor V Leiden is associated with pre-eclampsia but not with fetal growth restriction: a genetic association study and meta-analysis. J Thromb Haemost. 2008;6:1869–75.

    Article  PubMed  CAS  Google Scholar 

  48. Sifakis S, Soufla G, Koukoura O, Soulitzis N, Koutroulakis D, Maiz N, et al. Decreased annexin A5 mRNA placental expression in pregnancies complicated by fetal growth restriction. Thromb Res. 2010;125:326–31.

    Article  PubMed  CAS  Google Scholar 

  49. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18:1754–67.

    Article  PubMed  CAS  Google Scholar 

  50. Kovo M, Schreiber L, Bar J. Placental vascular pathology as a mechanism of disease in pregnancy complications. Thromb Res. 2013;131(Suppl 1):S18–21.

    Article  PubMed  CAS  Google Scholar 

  51. Huppertz B. Placental pathology in pregnancy complications. Thromb Res. 2011;127(Suppl 3):S96–9.

    Article  PubMed  CAS  Google Scholar 

  52. Chernausek SD. Update: consequences of abnormal fetal growth. J Clin Endocrinol Metab. 2012;97:689–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ozanne SE, Fernandez-Twinn D, Hales CN. Fetal growth and adult diseases. Semin Perinatol. 2004;28:81–7.

    Article  PubMed  Google Scholar 

  54. Fishel S, Baker D, Elson J, Ragunath M, Atkinson G, Shaker A, et al. Precision medicine in assisted conception: a multicenter observational treatment cohort study of the annexin A5 M2 haplotype as a biomarker for antithrombotic treatment to improve pregnancy outcome. EBioMedicine. 2016;10:298–304.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Aranda.

Ethics declarations

This field study to verify possible association of M2/ANXA5 was designed as a prospective recruitment of RPL patients with post hoc analysis that was approved by the ethical committees of the institutions involved and was performed according to the principles of the Declaration of Helsinki. Informed consent was obtained from all participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranda, F., Udry, S., Perés Wingeyer, S. et al. Maternal carriers of the ANXA5 M2 haplotype are exposed to a greater risk for placenta-mediated pregnancy complications. J Assist Reprod Genet 35, 921–928 (2018). https://doi.org/10.1007/s10815-018-1142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1142-4

Keywords

Navigation