Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 3, pp 515–522 | Cite as

Comparison of the development of human embryos cultured in either an EmbryoScope or benchtop incubator

Embryo Biology
  • 185 Downloads

Abstract

Purpose

In this current study, our main goal was to establish that EmbryoScope incubation environment is comparable to standard incubation.

Methods

The development of sibling human zygotes was compared after culture in either a benchtop incubator (SI) or an EmbryoScope time-lapse incubator (ES). Between May 2015 to April 2016, a total of 581 normally fertilized 2PN, pronuclear-stage embryos, from 47 patients were allocated to culture in either a benchtop incubator (SI) or an EmbryoScope incubator (ES).

Results

The development of embryos to cleavage (up to day 3) and blastocyst stages (day 5/6) was compared between the two different incubators. The proportion of good quality embryos was higher in the ES group compared to the SI on day 2 (66.8 vs. 50.5%, P = 0.014) and on day 3 (75.1 vs. 56.0%, P = 0.006). Those differences were statistically significant. A higher proportion of embryos developed to good quality blastocysts when cultured in the EmbryoScope compared to the benchtop (49.4 vs. 42.0%, P = 0.24), but this was not significant. Finally, no significant differences were noted with the proportion of blastocysts chosen for cryopreservation on day 5/6 in the two incubators.

Conclusions

The findings support the view that the EmbryoScope incubator supports at least equivalent in vitro development of human embryos compared to other standard incubation methods and may promote improved development during early cleavage stages.

Keywords

Human embryo culture Morphologic analysis Time-lapse monitoring 

Notes

Acknowledgements

We would like to acknowledge the embryology team for their assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and with the 1964 Helsinki declaration and its later amendments. For this type of study, formal consent is not required.

References

  1. 1.
    Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, et al. Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;20(6):808–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Martin JR, Bromer JG, Sakkas D, Patrizio P. Live babies born per oocyte retrieved in a subpopulation of oocyte donors with repetitive reproductive success. Fertil Steril. 2010;94(6):2064–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Johnston J, Gusmano MK, Patrizio P. Preterm births, multiples, and fertility treatment: recommendations for changes to policy and clinical practices. Fertil Steril. 2014;102:36–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Gerris J, de Neubourg D, Mangelschots K, van Royen E, Vercruyssen M, Barudy-Vasquez J, et al. Elective single day 3 embryo transfer halves the twinning rate without decrease in the ongoing pregnancy rate of an IVF/ICSI programme. Hum Reprod. 2002;17:2626–31.CrossRefPubMedGoogle Scholar
  6. 6.
    van Montfoort AP, Dumoulin JC, Land JA, Coonen E, Derhaag JG, Evers JL. Elective single embryo transfer (eSET) policy in the first three IVF/ICSI treatment cycles. Hum Reprod. 2005;20:433–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Vilska S, Tiitinen A, Hyden-Granskog C, Hovatta O. Elective transfer of one embryo results in an acceptable pregnancy rate and eliminates the risk of multiple birth. Hum Reprod. 1999;14:2392–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Biggers JD. Reflections on the culture of the preimplantation embryo. Int J Dev Biol. 1998;42:879–84.PubMedGoogle Scholar
  9. 9.
    Biggers JD. Thoughts on embryo culture conditions. Reprod BioMed Online. 2002;4:30–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90:473–83.CrossRefPubMedGoogle Scholar
  11. 11.
    Gardner DK, Lane M. Development of viable mammalian embryos in vitro: evolution of sequential media. In: Cibelli J, Lanza RP, KHS C, West MD, editors. Principles of cloning 2002. New York: Academic Press. p. 187–213.Google Scholar
  12. 12.
    Kovacic B. Culture systems: low-oxygen culture. Methods Mol Biol. 2012;912:249–72.PubMedGoogle Scholar
  13. 13.
    Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, et al. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24(2):300–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Waldenström U, Engström AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;91(6):2461–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012. Jul;11:7.Google Scholar
  16. 16.
    Kirkegaard K, Ahlstrom A, Ingerslev HJ, Hardarson T. Choosing the best embryo by time lapse versus standard morphology. Fertil Steril. 2015;103:323–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Conaghan J. Time-lapse imaging of preimplantation embryos. Semin Reprod Med. 2014;32:134–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Aparicio B, Cruz M, Meseguer M. Is morphokinetic analysis the answer? Reprod BioMed Online. 2013;27:654–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen AA, Tan L, Suraj V, Reijo Pera R, Shen S. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil Steril. 2013;99:1035–43.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wong C, Loewke K, Bossert N, Behr B, de Jonge C, Baer T, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Baxter Bendus AE, Mayer JF, Shipley SK, Catherino WH. Interobserver and intraobserver variation in day 3 embryo grading. Fertil Steril. 2006;86:1608–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Sundvall L, Ingerslev HJ, Breth Knudsen U, Kirkegaard K. Inter- and intraobserver variability of time-lapse annotations. Hum Reprod. 2013;28:3215–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Oh SJ, Gong SP, Lee ST, Lee EJ, Lim JM. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil Steril. 2007;88(4 Suppl):1150–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Ottosen LD, Hindkjaer J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J Assist Reprod Genet. 2007;24(2–3):99–103.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, et al. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011;28:569–73.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol. 2008;199(6):660.CrossRefPubMedGoogle Scholar
  27. 27.
    Nakahara T, Iwase A, Goto M, Harata T, Suzuki M, Ienaga M, et al. Evaluation of the safety of time-lapse observations for human embryos. J Assist Reprod Genet. 2010;27(2–3):93–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pribenszky C, Losonczi E, Molnar M, Lang Z, Matyas S, Rajczy K, et al. Prediction of in-vitro developmental competence of early cleavage stage mouse embryos with compact time-lapse equipment. Reprod BioMed Online. 2010;20(3):371–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Holm P, Shukri NN, Vajta G, Booth P, Bendixen C, Callesen H. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology. 1998;50(8):1285–99.CrossRefPubMedGoogle Scholar
  30. 30.
    Classens O, Wehr J, Harrison K. Optimizing sensitivity of human sperm motility assay for embryo toxicity testing. Hum Reprod. 2000;15:1586–91.CrossRefGoogle Scholar
  31. 31.
    Bourne H, Edgar DH, Baker HWG. Sperm preparation techniques. In: Gardner DK, Weissman A, Howles CM, Shoham Z, editors. Textbook of assisted reproductive techniques: laboratory and clinical perspectives. 2nd ed. USA: Informa Healthcare; 2004. p. 79–91.Google Scholar
  32. 32.
    Cutting R, Morroll D, Roberts SA, Pickering SJ, Rutherford A, BFS and ACE. Elective single embryo transfer: guidelines for practice British Fertility Society and Association of Clinical Embryologists. Hum Fertil (Camb). 2008;11(3):131–46.CrossRefGoogle Scholar
  33. 33.
    Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999;11(3):307–11. ReviewCrossRefPubMedGoogle Scholar
  34. 34.
    Desai NN, Goldberg JM, Austin C, Falcone T. The new Rapid-i carrier is an effective system for human embryo vitrification at both the blastocyst and cleavage stage. Reprod Biol Endocrinol. 2013;11:41.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Scott L. The biological basis of non-invasive strategies for selection of human oocytes and embryos. Hum Reprod Update. 2003;9:237–49.CrossRefPubMedGoogle Scholar
  36. 36.
    ALPHA Scientists In Reproductive Medicine ESHRE Special Interest Group Embryology. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod BioMed Online. 2011;22:632–46.Google Scholar
  37. 37.
    Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remohí J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.CrossRefPubMedGoogle Scholar
  38. 38.
    Bigger JD. The culture of the mammalian preimplantation embryo. In: Gianaroli L, Campana L, Trounson A, editors. Implantation in mammals. New York: Raven Press; 1993. p. 123–36.Google Scholar
  39. 39.
    Biggers JD. Fundamentals of the design of culture media that supports human preimplantation development. In: Van Blerkom J, editor. Essential IVF. Norwell: Klewer Adademic Press; 2003. p. 291–332.Google Scholar
  40. 40.
    De Mouzon J, Goossens V, Bhattacharya S, Castilla JA, Ferraretti AP, Korsak V, et al. Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum Reprod. 2010;25:1851–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98:1481–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Kirkegaard K, Hindkjaer JJ, Grøndahl ML, Kesmodel US, Ingerslev HJ. A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. J Assist Reprod Genet. 2012;29(6):565–72.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Martínez-Burgos M, Losada C, Pareja S, Agudo D, Bronet F. Effects of low O2 concentration in extended embryo culture using benchtop incubators (embryoscope and MINC). Fertil Steril. 2013;100(3):S251.CrossRefGoogle Scholar
  44. 44.
    Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escribá MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98(6):1458–63.CrossRefPubMedGoogle Scholar
  45. 45.
    Gardner DK, Lane M. Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod. 1996;11:2703–12.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang JQ, Li XL, Peng Y, Guo X, Heng BC, Tong GQ. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod BioMed Online. 2010;20:510–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Hickman CF, Campbell A, Duffy S, Fishel S. Reverse cleavage: its significance with regards to human embryo morhpokinetics, ploidy and stimulation protocol. Hum Reprod. 2012;27(Suppl 2):ii103–5.CrossRefGoogle Scholar
  48. 48.
    Montag M, Pedersen KS, Ramsing N. Time-lapse imaging of embryo development: using morphokinetic analysis to select viable embryos. In: Quinn P, editor. Culture media, solutions, and systems in human ART. Cambridge: Cambridge University Press; 2014. p. 222–3.Google Scholar
  49. 49.
    Liu Y, Chapple V, Roberts P, Matson P. Prevalence, consequence and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil Steril. 2014;102(5):1295–300.CrossRefPubMedGoogle Scholar
  50. 50.
    Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Clinical significance of intercellular contact at the four-cell stage of human embryos, and the use of abnormal cleavage patterns to identify embryos with low implantation potential: a time-lapse study. Fertil Steril. 2015;103(6):1485–91.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertil Steril. 2016;105(3):656–62.CrossRefPubMedGoogle Scholar
  52. 52.
    Petersen BM, Boel M, Montag M, Gardner DK. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum Reprod. 2016;31(10):2231–44.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pribensky C, Matyas S, Kovacs P, Losomczi E, Zadori J, Vajta G. Pregnancy achieved by transfer of a single blastocyst selected by time-lapse monitoring. Reprod BioMed Online. 2010;21:533–6.CrossRefGoogle Scholar
  54. 54.
    Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Fontes CF. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod BioMed Online. 2013;26:477–85.CrossRefPubMedGoogle Scholar
  55. 55.
    Dal Canto M, Coticchio G, Mignini Renzini M, De Ponti E, Novara PV, Brambillasca F, et al. Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod BioMed Online. 2012;25:474–80.CrossRefPubMedGoogle Scholar
  56. 56.
    Li R, Pedersen KS, Liu Y, Pedersen HS, Lægdsmand M, Rickelt LF, et al. Effect of red light on the development and quality of mammalian embryos. J Assist Reprod Genet. 2014;31(7):795–801.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1:91–148.CrossRefPubMedGoogle Scholar
  58. 58.
    Bavister BD. Interactions between embryos and the culture milieu. Theriogenology. 2000;15:619–26.CrossRefGoogle Scholar
  59. 59.
    Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9:557–82.CrossRefPubMedGoogle Scholar
  60. 60.
    Pool TB. An update on embryo culture for human assisted reproductive technology: media performance and safety. Semin Reprod Med. 2005;23:309–18.CrossRefPubMedGoogle Scholar
  61. 61.
    Lane M, Gardner DK. Embryo culture medium: which is the best? Best Pract Res Clin Obstet Gyn. 2007;21:83–100.CrossRefGoogle Scholar
  62. 62.
    Xie Y, Wang F, Puscheck EE, Rappolee DA. Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Hum Reprod. 2007;74:1287–94.CrossRefGoogle Scholar
  63. 63.
    Lane M, Gardner DK. Regulation of ionic homeostasis by mammalian embryos. Semin Reprod Med. 2000;18:195–204.CrossRefPubMedGoogle Scholar
  64. 64.
    Huisman GJ, Fauser BC, Eijkemans MJ, Pieters MH. Implantation rates after in vitro fertilization and transfer of a maximum of two embryos that have undergone three to five days of culture. Fertil Steril. 2000;73:117–22.CrossRefPubMedGoogle Scholar
  65. 65.
    Macklon NS, Pieters MHEC, Hassan MA, Jeucken PHM, Eijkemans MJC, Fauser BCJM. A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod. 2002;17:2700–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Swain JE, Cabrera L, Xu X, Smith GD. Microdrop preparation factors influence culture-media osmolality, which can impair mouse embryo preimplantation development. Reprod BioMed Online. 2012;24(2):142–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Harper J, Cristina Magli M, Lundin K, Barratt CLR, Brison D. When and how should new technology be introduced into the IVF laboratory? Hum Reprod. 2011;27(2):303–13.CrossRefPubMedGoogle Scholar
  68. 68.
    Mamo S, Gal AB, Bodo S, Dinnyes A. Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol. 2007;7:14.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Assisted Conception Unit, Royal Infirmary of EdinburghEFRECEdinburghUK

Personalised recommendations